

Reliable designs that provide what you want; when you want it!

Products included:

- Timers
- Time delay relays
- Encapsulated timing modules
- Universal timers
- Multifunction timers
- ProgramaCube ${ }^{\circledR}$ timers and counters
- Solid state flashers
- Tower \& obstruction lighting controls
- Voltage monitors
- Phase monitors
- Current sensors \& monitors
- Liquid level controls
- Alternating relays
- Accessories

Express Delivery Products
The express delivery products group was selected from the list of most popular and widely used timers and controls. All products in this section are In Stock, available for immediate delivery, or where marked QS, are available through the QuickShip program. This catalog includes general specifications. Complete product details are available in the full line catalog pages. The Express Products home page provides a fast and direct path to find the details on all the express products in the catalog.
Full Line Catalog
The complete contents of the SSAC product line is available in the SS3 Catalog, \#1TRC001009C0202. the SS3 is easy-to-use and can be understood by designers, technicians, service contractors and non-technical users. Each data sheet includes complete specifications, illustrations, photos and operational information needed to select one of the over 225 product series. Quality designs and rugged encapsulated construction allow the SSAC brand products to provide reliable performance and are backed by an exclusive 10 Year Product Warranty. The SS3 includes informative application notes along with a colorful plant tour, and information about custom products design programs. The SS3 is available in print, on DC-ROM or for downloading at http://literature.abb-newsletters.com/2

Electronic Products \& Relays Catalog

The complete IEC DIN mount timers and monitoring relays product offering is found in the EPR Catalog, \# 2CDC110004C0205. The most popular part numbers are available at standard lead times. These products have a large list of Global approvals including cULus Listing and CE Certification and Global support through ABB sales offices in over 100 countries. The EPR is available in print or for downloading at: http://literature.abb-newsletters.com/2.

ProgramaCube

KRPS Series Single Function

Time Delay Relay (10A SPDT)

US Patent 6708135

- Choose 1 of 14 Standard Functions
- Factory Programmed
- Microcontroller Circuitry, +/-0.5\% Repeat Accuracy
- Isolated 10 A SPDT Output Contacts
- Universal Voltage
24...240 VAC/DC
- Delays from $100 \mathrm{~ms} . . .1000 \mathrm{~h}$ in 9 Ranges
■ Onboard, External Adjust or Fixed Time Delay

Complete Product Details: httri/www.ssac.com/pp1.htm

Accessories

See accessory pages

Series is a factory programmed time delay relay available in any 1 of 14 functions and measures only 2 inches square. Modules are manufactured without the function assigned. When an order is received, the function and time delay software are added. This approach provides fast QuickShip delivery on all time ranges and functions. Encapsulation protects against shock, vibration, and humidity. The KRPS Series is a cost effective approach for OEM applications that require small size, isolation, accuracy, and

- Choose from 1 of 14 standard single functions,
fixed or onboard or external adjustment, and 9 time ranges. All available through the QuickShip program.

$\mathrm{V}=$ Voltage $\mathrm{C}=$ Common, Transfer Contact
NC = Normally Closed NO = Normally Open
S1 = Initiate Switch UTL = Untimed Load
A knob is supplied for adjustable units, or RT terminals $4 \& 5$ for external adjust. Select a 100 K ohm potentiometer for full time range adjustment. The untimed load is optional. S1 is not used for some functions. Dashed lines are internal connections.

Technical Data

Output Rating $\left(\right.$ at $\left.40^{\circ} \mathrm{C}\right)$	10 A resistive at 125 V AC
	5 A resistive at 230 V AC \& 28 V DC
$1 / 4 \mathrm{hp}$ at 125 V AC	
Mechanical	
Mounting	Surface mt. with one \#10 $(\mathrm{M} 5 \times 0.8)$ screw
Package	$2 \times 2 \times 1.21 \mathrm{in} .(50.8 \times 50.8 \times 30.7 \mathrm{~mm})$
Termination	$0.25 \mathrm{in} .(6.35 \mathrm{~mm})$ male quick connects

Ordering Table

KRPS	X	X
Series	Input	Adjustment
	- A - $24 . . .240$ V AC/DC	-1-Fixed
	L D - $12 . . .48 \vee \mathrm{DC}^{\dagger}$	-2-Onboard
		Adjustment
		-3-External
		Adjustment

X
Function**
Specify Function
(Refer to Function
Chart for Code)

xed Delay is selected, insert delay
... 1000] followed by (S) secs.,
mins., or (H) hrs.

Example P/N:

KRPSA23RE $=$ Universal AC/DC voltage, onboard adjustment, $10 . . .1000$ sec., recycling, ON time first KRPSA10.5SI = Universal AC/DC voltage, fixed delay of 0.5 sec., interval function

The KRPD Series is a factory programmed time delay relay available with 1 of 12 standard dual functions. Modules are manufactured without the function assigned. When an order is received, the function and time delay software are added. This approach provides Quick Ship delivery on all standard time ranges and functions. Encapsulation protects against shock, vibration, and humidity. The KRPD Series is a cost effective approach for OEM applications that require small size, isolation, accuracy, and long life.

Choose from 1 of 12 standard single functions,
fixed or onboard adjustment and 9 time ranges.
All available through the Quick Ship program.

Connection

V = Voltage $C=$ Common, Transfer Contact NC = Normally Closed NO = Normally Open S1 = Initiate Switch UTL = Optional Untimed Load

A knob is supplied for adjustable units. The untimed load is optional. S 1 is not used for some functions. Dashed lines are internal connections.

**Function Chart	Code
Delay On Make/Delay on Break	MB
Delay On Make/Recycle (ON Time First, Equal Times)	MRE
Delay On Make/Interval	MI
Delay On Make/Single Shot	MS
Interval/Recycle (ON Time First, Equal Times)	IRE
Delay On Break/Recycle (ON Time First, Equal Times)	BRE
Single Shot/Recycle (ON Time First, Equal Times)	SRE
Recycle (Both Times Adjustable, ON Time First)	RXE
Recycle (Both Times Adjustable, OFF Time First)	RXD
Interval/Delay On Make	IM
Accumulative Delay On Make/Interval	AMI
Single Shot Lockout	SL

See page 10 for function time diagrams

- Choose 1 of 12 Standard Dual Functions
- Factory Programmed
- Microcontroller Circuitry, +/-0.5\% Repeat Accuracy
- Isolated 10 A SPDT

Output Contacts

- Universal Voltage

24 ... 240 V AC/DC
■ Delays from 100 ms ... 1000 h in 9 Ranges

Ordering Table

KRPD	x	X
Series	Input	First Adjustment (T1 or RT1)
	-A - $24 . . .240$ V AC/DC	-1-Fixed
	LD - $12 \ldots 48 \mathrm{~V}$ DC	-2 - Onboard Adjust
		-3 - External Adjust

${ }^{\dagger}$ Note: Grayed options are available in standard lead time.

Example P/N:

X
First Time Delay*
-1-0.1... 10 s
-2-1... 100 s
-3-10... 1000 s
-4-0.1... 10 m
-5-1... 100 m
-6-10... 1000 m
-7-0.1... 10 h
-8-1... 100 h
-9-10... 1000 h

X
Second Adjustment (T2 or RT2)
1- Fixed
-2 - Onboard Adjust
3 - External Adjust

X	X
Second Time Delay*	Function**
-1-0.1 ... 10 s	- Specify Function
-2-1... 100 s	(Refer to Function
-3-10... 1000 s	Chart for Code)
-4-0.1 ... 10 m	
-5-1... 100 m	
-6-10... 1000 m	
-7-0.1... 10 h	
-8-1... 100 h	
-9-10... 1000 h	

*If Fixed Delay is selected, insert delay [0.1 ... 999] followed by (S) secs., (M) mins., or (H) hrs.
KRPDA2525MRE $=$ Universal AC/DC voltage, onboard adjustment, $\mathrm{T} 1=1 \ldots 100 \mathrm{~m}, \mathrm{~T} 2=1 \ldots 100 \mathrm{~m}$, delay on make/recycling - ON time first KRPDD10.5S110SMB = Universal AC/DC voltage, fixed delays, $\mathrm{T} 1=0.5 \mathrm{sec}$., $\mathrm{T} 2=100 \mathrm{sec}$. delay on make /delay on break

ProgramaCube

KSPS Series Single Function
Timing Module (1A Solid State Output)

US Patent 6708135

- Choose 1 of 14 Standard Functions
- Factory Programmed
- Microcontroller Circuitry, +/-0.5\% Repeat Accuracy
- Solid State Output 1 A Steady, 10 A Inrush
- Onboard, External Adjust or Fixed Time Delay
■ Universal Voltage 24 ... 240 V AC
- Delays from $100 \mathrm{~ms} . . .1000 \mathrm{~h}$ in 9 Ranges

Complete Product Details:

httrf/www.ssac.com/pp1.htm

Accessories

The KSPS Series is a factory programmed module available in any 1 of 14 standard functions. Modules are manufactured without the function assigned. When an order is received, the function and time delay software are added. This approach allows QuickShip delivery on a large number of part numbers. The 1 A steady, 10 A inrush rated solid state output provides 100 million operations typical. Encapsulation protects against shock, vibration, and humidity. The KSPS Series is a cost effective approach for OEM applications that require small size and solid state reliability.

Choose from 1 of 14 standard single functions, fixed or onboard or external adjustment, and 9 time ranges. All available through the QuickShip program.

A knob is supplied for adjustable units, or RT terminals 4 \& 5 for external adjustment. Select a 100K ohm potentiometer for full time range adjustment. The untimed load is optional. S1 is not used for some functions. Dashed lines are internal connections.

See page 9 for function time diagrams

Technical Data

Output	
Rating	1 A steady, 10 A inrush for 16 ms
Mechanical	Surface mt. with one \#10 $(\mathrm{M} 5 \times 0.8) \mathrm{screw}$
Mounting	$2 \times 2 \times 1.21 \mathrm{in} .(50.8 \times 50.8 \times 30.7 \mathrm{~mm})$
Package	$0.25 \mathrm{in} .(6.35 \mathrm{~mm})$ male quick connects
Termination	

Ordering Table

Series

X	X
Input	Adjustment
- A - $24 . . .240$ V AC	- 1 - Fixed
-P-12 ... 120 V DC	2- Onboard
Positive Switching	Adjustment
N-12... 120 V DC	-3-External
Negative Switching	Adjustment

[^0]Series

$$
\begin{aligned}
& \text { Input } \\
& \text { A - } 24 \ldots 240 \text { V AC } \\
& \text { P }-12 \ldots 120 \text { V DC } \\
& \text { Positive Switching } \\
& \text { N - } 12 \ldots 120 \text { V DC } \\
& \text { Negative Switching }
\end{aligned}
$$

Adjustment
 2 - Onboard Adjustment Adjustment

${ }^{\dagger}$ Note: Grayed options are available in standard lead time.

Example P/N:

KSPSA23RE $=$ Universal AC voltage, onboard adjustment, 10... 1000 sec., recycling, ON time first
KSPSA10.5SI = Universal AC voltage, fixed delay of 0.5 sec., interval function

Terminal Location for External Adjustment.

$\mathrm{V}=$ Voltage	$\mathrm{T} 1 \& R_{\mathrm{T}} 1=$ First Adjustment
$\mathrm{L}=$ Load	$\mathrm{T} 2 \& R_{\mathrm{T}} 2=$ Second Adjustment

A knob is supplied for adjustable units or R_{T} terminals for external adjust. Use a 100 K ohm potentiometer for full time range adjustment. Dashed lines are internal connections.

Technical Data

Output Rating	1 A steady, 10 A inrush for 16 ms
Mechanical	
Mounting	Surface mt. with one \#10 $(\mathrm{M} 5 \times 0.8)$ screw
Package	$2 \times 2 \times 1.21 \mathrm{in} .(50.8 \times 50.8 \times 30.7 \mathrm{~mm})$
Termination	$0.25 \mathrm{in} .(6.35 \mathrm{~mm})$ male quick connects

DIN rail adaptor
P/N: P1023-20
See accessory pages

KSPDA2525MRE $=24 \ldots 240 \mathrm{~V}$ AC, onboard adjustment, $\mathrm{T} 1=1 \ldots 100 \mathrm{~m}, \mathrm{~T} 2=1 \ldots 100 \mathrm{~m}$, delay on make $/$ recycling - ON time first KRPDD10.5S110SMB $=24 \ldots 240 \mathrm{VAC}$, fixed delays, $\mathrm{T} 1=0.5 \mathrm{sec} ., \mathrm{T} 2=15 \mathrm{sec}$. recycling - both times adjustable, ON time first.

ProgramaCube
 KSPU Series Single Timer or Counter Function
 Timing Module (1A Solid State Output)

US Patent 6708135

- Choose 1 of 16 Standard Functions
- Factory Programmed
- Microcontroller Circuitry, +/-0.1\% Repeat Accuracy
- Solid State Output 1 A Steady, 10 A Inrush
- Accurate Switch Adjustment
- Universal Voltage

24 ... 240 V AC

- Delays from $100 \mathrm{~ms} . . .1023 \mathrm{~h}$
in 6 ranges
■ Counts to 1023 in 3 Ranges

Complete Product Details:

Mounting Accessory
See accessory pages
DIN rail adaptor
P1023-20

Switch Adjustment

One or more switches must be ON for proper operation.

The untimed load is optional. S1 is not used for some functions. Dashed lines are internal connections.

The KSPU Series is a factory programmed 1 amp solid state module available in any 1 of 16 switch adjustable timer or counter functions. Modules are manufactured without the function assigned. When an order is received, the function and time delay software are added. This approach provides fast QuickShip delivery on a large number of part numbers. Switch adjustment allows accurate selection of the time delay or number of counts the first time and every time. The solid state output provides 100 million operations, typical. The KSPU Series is a cost effective approach for OEM applications that require small size, solid state reliability, and accurate switch adjustment.

**Function Chart	
Delay on Make	M
Delay on Break	B
Recycle (ON Time First, Equal Times)	RE
Recycle (OFF Time First, Equal Times)	RD
Single Shot	S, SD
Interval	I
Trailing Edge Single Shot	TS
Inverted Single Shot	US
Inverted Delay on Break	AB
Accumulative Delay on Make	MM
Motion Detector/Retriggerable, Single Shot	PSD PSE
Counter/Pulsed Output	C
Counter/Interval Output	CI
Flip Flop (trailing edge, alternating)	FT
Flip Flop (leading edge)	F

See page 9 for function time diagrams

Technical Data

Count	
Rate	≤ 25 counts per second
Output	
Rating Counter Output (P/N Variable 7 \& 8)	1 A steady, 10 A inrush for 16 ms Output Pulse width: $300 \mathrm{~ms}+/-20 \%$
Protection	
Circuitry	Encapsulated
Mechanical	
Mounting Package Termination	Surface mt. with one \#10 (M5 $\times 0.8$) screw $2 \times 2 \times 1.21 \mathrm{in}$. $(50.8 \times 50.8 \times 30.7 \mathrm{~mm})$ 0.25 in . (6.35 mm) male quick connects

Ordering Table

KSPU
Series

${ }^{\dagger}$ Note: Grayed option is available in standard lead time.

Example P/N:

KSPUA2RE = Universal AC voltage, switch adjustment, 1... 1023 sec., recycling, ON first

P/N: P1023-20

See accessory pages.

Ordering Table

 HRPS/HRIS
Series

X

Adjustment
 - 1 - Fixed
 -2 - Onboard Adjust
 -3-External
 Adjust

${ }^{\dagger}$ Note: Grayed option is available in standard lead time.

Example P/N:

X

Time Delay *
-1-0.1... 10 s
-2-1... 100 s
-3-10... 1000 s
-4-0.1... 10 m
-5-1... 100 m
-6-10... 1000 m
-7-0.1... 10 h
-8-1... 100
9-10 ... 10

X
Function **
-Specify Function (Refer to Function Chart for Code)

*If Fixed Delay is selected,

 insert delay [0.1 ... 1000] followed by (S) secs., (M) mins., or (H) hrs.

The HRPS/HRIS Series combines a 30 amp rated electromechanical relay output with any 1 of 14 standard functions. Modules are manufactured without the function assigned. When an order is received, the function and time delay software are added. This approach allows Quick Ship delivery on all time ranges and functions The 30A res. output contact rating allows for direct operation of heavy loads such as compressors, pumps, blower motors, heaters, etc. This series is ideal for OEM applications where cost is a factor. HRPS has non-isolated SPDT relay contacts, and HRIS has isolated SPDT relay contacts.

Choose from 1 of 14 standard single functions, fixed or onboard or external adjustment, and 9 time ranges. All available through the QuickShip program.

Output		
Ratings:	SPDT-N.O	SPDT-N.C.
General Purpose 125/240 V AC	30 A	15 A
Motor Load 125 V AC	$1 \mathrm{hp*}$	1/4 hp**
240 V AC	$2 \mathrm{hp}{ }^{* *}$	$1 \mathrm{hp**}$
Life	Electrical -- $1 \times 105,{ }^{*} 3 \times 104,{ }^{* *} 6,000$	
Mechanical		
Mounting	Surface mt. with one \#10 (M5 $\times 0.8$) screw	
Package	$3 \times 2 \times 1.5$ in ($76.7 \times 51.3 \times 38.1 \mathrm{~mm}$)	
Termination	0.25 in . (6.35 mm) male quick connects	

ProgramaCube

 HRPU/HRIU Series Single FunctionTime Delay Relay (30A SPDT)

- Choose 1 of 16 Standard Functions
- Factory Programmed
- Microcontroller Circuitry,
+/-0.1\% Repeat Accuracy
- 30 A, N.O. Output Contacts
- Accurate Switch Adjustment

■ 24 ... 240 V AC; 24 ... 110 V DC

- Delays from 100 ms ... 1023 h in 6 Ranges
■ Counts to 1023 in 3 Ranges

Mounting Accessory

Complete Product Details: httr//www.ssac.com/pp1.htm

Switch Adjustment

Adjustment Switch Operation			
TIME DELAY		COUNTER	
0.1...102.3	1... 1023	1... 165	1... 63
OFF ${ }^{\text {P }}$ ON	OFF ${ }^{\text {- }}$	OFF ${ }^{\text {O }}$ -	OFF ${ }^{\text {P }}$
≥-0.1	$\square-1$	- - 1	$\square=\frac{1}{\square}$
$\geq=0.2$	$\square \square \quad 2$	$\square \square \square_{\square}^{\square}-2$	$\square \square 2$
$\underline{\square}=$0.4 0.8	- - $\quad 8$	$\square \square \square^{\square}-1$	$\square=\square^{\square}$
$\geq=1.6$	$\square=16$	$\square-5$	$\square=16$
I-3.2	$\square=32$	$\square=10$	$\underline{=}-\frac{32}{M}$
$\square=6.4$	$\square=64$	$\square=20$	$\square=\frac{M}{\square}$
$\square 12.8$	$\square=128$	$\square-30$	$\square=1$
$\square=25.6$	$\square-256$	$\square-40$	$\square \square 2$
51.2	-512	- 50	
6.3	544	57 counts	44 s Delay 2 counts to Start

The HRPU/HRIU features a 30A rated electromechanical relay output with any 1 of 16 standard switch adjustable timer or counter functions. Its switching capacity allows direct control of loads like compressors, pumps, motors, heaters, and lighting. Modules are manufactured without the function assigned. When an order is received, the function and time delay software are added. This approach provides Quick Ship delivery on a large number of part numbers. Switch adjustment allows accurate selection of the time delay or number of counts the first time and everytime. The HRPU has non-isolated relay contacts, the HRIU has isolated relay contacts. The HRPU/HRIU Series is a cost effective approach for OEM applications that require small size, reliability and accurate switch adjustment.

One or more switches must be ON for proper operation.

Connection

HRIU
Isolated Output
L = Load
$\mathrm{V}=$ Voltage
S1 = Initiate Switch*
UTL = Optional Untimed Load

$* *$ Function Chart	
Delay on Make Timer	Code
Delay on Break Timer	B
Recycle Timer (ON Time First, Equal Times)	RE
Recycle Timer (OFF Time First, Equal Times)	RD
Single Shot Timer	S,SD
Interval Timer	I
Trailing Edge Single Shot Timer	TS
Motion Detector/Retriggerable Single Shot	PSD, PSE
Inverted Single Shot Timer	US
Accumulative Delay on Make Timer	AM
Inverted Delay on Break Timer	UB
Counter/Pulsed Output	C
Counter/Interval Output	CI
Flip Flop (Trailing Edge, Alternating)	FT
Flip Flop (Leading Edge)	F

See page 9 for function time diagrams

Ordering Table

HRPU/HRIU

Series

Technical Data
Note: S1 is not used for some functions

Count	
Rate	≤ 25 counts per second
Output	
Ratings:	
General Purpose	125/240 V AC $30 \mathrm{~A} \quad 15 \mathrm{~A}$
Motor Load	
	240 V AC ${ }^{\text {c }}$ hp** $1 \mathrm{hp**}$
Life	Electrical -- 1×105, *3 x 104, ** 6,000 (P/N Variable 7 \& 8) Output Pulse width $300 \mathrm{~ms}+/-20 \%$
Counter Output	
Mechanical	
Mounting	Surface mt. with one \#10 (M5 $\times 0.8$) screw
Termination	0.25 in . (6.35 mm) male quick connects
Package	$3 \times 2 \times 1.5 \mathrm{in}$. $(76.7 \times 51.3 \times 38.1 \mathrm{~mm})$

Function Diagrams

SD Operates same as S except will not energize and start timing if initiate switch is closed when input voltage is applied.

B

PSE

Legend
$\mathrm{V}=$ Voltage $\quad \mathrm{R}=$ Reset $\quad \mathrm{S} 1=$ Initiate Switch
TD1, TD2 $=$ Time Delay $\mathrm{C}=$ Count
$\mathrm{P}=$ Pulse Duration $\quad \mathrm{t}=$ Incomplete Time Delay
$\mathrm{NO}=$ Normally Open $\quad \mathrm{NC}=$ Normally Closed
$\rightarrow-=$ Undefined time
Note: If S1 is closed when input voltage is applied, the function starts and the time delay begins. (B, S, TS, US, UB, AM, PSD, FT)

Function Diagrams

Legend
$\mathrm{V}=$ Voltage $\quad \mathrm{R}=$ Reset $\quad \mathrm{S} 1=$ Initiate Switch TD1, TD2 = Time Delay $t=$ Incomplete Time Delay NO = Normally Open \quad NC = Normally Closed \longrightarrow Undefined time

Note: If $S 1$ is closed when input voltage is applied, the function starts and the time delay begins. (MB, MS, BRE, SRE, AMI, SL)

Complete Product Details:

The TRU Series is a multifunction, knob adjustable, universal time delay relay. As a universal replacement part, it can reduce inventory costs; replacing up to 1000 competitive time delay relay part numbers.

Knob adjustment of the time delay Easy, fast slide switch selection of 1 of 6 of the most popular functions Positive switch selection of the time range and seconds or minutes.

A six position slide switch selects the function. 8 Pin DPDT base wiring has 3 popular functions. All six functions are available in the 8 pin SPDT and 11 pin DPDT versions.

3 Popular Functions:

- Delay On Make
- Interval
- Recycling

Dashed lines are internal connections.

Technical Data

 Relay contacts are isolated.Function

$\mathrm{V}=$ Voltage $\mathrm{S} 1=$ Initiate Switch
R = Reset TD = Time Delay NO = Normally Open Contact
$\mathrm{t}=$ Incomplete Time Delay

Time Delay
Range: Switch Selectable
Adjustments - Multiplier:

- Time Setting:

Repeat Accuracy
Output

Output		
	Rating	10 A resistive at $120 / 240 \mathrm{~V} \mathrm{AC} \mathrm{\&} \mathrm{28} \mathrm{V} \mathrm{DC;} 1 / 3 \mathrm{hp}$ at $120 / 240 \mathrm{~V} \mathrm{AC}$
Mechanical		
	Package	$3.44 \times 2.39 \times 1.78$ in. $(87.3 \times 60.7 \times 45.2 \mathrm{~mm})$
	Mounting	Surface or 35 mm DIN rail, requires accessory 8 or 11 pin socket

Ordering Table

Part Number	Voltage	Functions	Connection
TRU1	$\begin{gathered} 19 \text {... } 264 \text { V AC; } \\ 19 \text {... } 30 \text { V DC } \end{gathered}$	3	8 pin DPDT
TRU2		6	8 pin SPDT
TRU3		6	11 pin DPDT

Multifunction, Multirange
TRDU Series Switch Adjustable
Time Delay Relay (10A SPDT or DPDT)

- Multifunction-21 Timing Functions
■ Multirange - 0.1 s ... $1,705 \mathrm{~h}$ in 8 Ranges
- Switch Selectable Function, Time Delay, \& Ranges
- Microcontroller +/-0.1\% Repeat Accuracy
- 24 or 120V AC; 24 V DC Input Voltages
- 10 A , Isolated SPDT or DPDT Output Contacts

Mounting and Connection

Accessory

[^1]
Ordering Table

Part Number	Input Voltage	Base Connection
TRDU24A2	$24 \mathrm{~V} \mathrm{AC/DC}$	8 Pin SPDT
TRDU24A3		11 Pin DPDT
TRDU120A1	120 V AC	8 Pin DPDT
TRDU120A2		8 Pin SPDT
TRDU120A3		11 Pin DPDT

Multifunction, Multirange
 TRDU Series Switch Adjustable
 Function Diagrams

Dedicated Timers
TDM, TDI, TDS, TDB Digi-Set Series
Time Delay Relay

The TD Series of time delay relays are our most popular series; providing accurate and reliable performance with a 10 year warranty. The delay is adjusted by ten binary DIP switches, which allow selection of the time delay the first time and every time.

Connection

Relay contacts are isolated.
Dashed lines are internal connections.

Technical Data

Time Delay	$0.1 \ldots 102.3 \mathrm{~s}$ in 0.1 s increments
Ranges	$1 \ldots 1023 \mathrm{~s}$ in 1 s increments $10 \ldots 10,230 \mathrm{~s}$ in 10 s increments
Repeat Accuracy	$+/-0.1 \%$ or 20 ms , whichever is greater
Indication Indicator	LED glows during timing; relay is energized
Output Rating	10 A resistive at $120 / 240 \mathrm{~V} \mathrm{AC} \mathrm{\&} 28 \mathrm{~V} \mathrm{DC;}$ $1 / 3 \mathrm{hp}$ at $120 / 240 \mathrm{~V} \mathrm{AC}$
Mechanical Package Mounting	$3.2 \times 2.4 \times 1.8$ in. $(81.3 \times 60.7 \times 45.2 \mathrm{~mm})$ Requires accessory $8 \mathrm{pin}($ Octal) socket

Ordering Table

Part Number	Voltage	Function	Time Range	Connection
TDB120AL	120 V AC	Delay on Break	$1 . . .1023$ s	B
TDI120AL		Interval		A
TDM120AL		Delay on Make		A
TDML120AL		Delay on Make	$0.1 \ldots 102.3 \mathrm{~s}$	A
TDMH120AL		Delay on Make	$10 \ldots 10230 \mathrm{~s}$	A
TDS120AL		Single Shot	$1 \ldots 1023 \mathrm{~s}$	B
TDB24AL	24 V AC	Delay on Break		B
TDM24AL		Delay on Make		A
TDM12DL	12 V AC	Delay on Make		A
TDML12DL		Delay on Make	$0.1 \ldots 102.3$ s	A

Call for 230 V AC, 110 V DC and combinations not listed

TDR Series - Plug-in Digi Set Recycling Timer
The TDR Series is and octal plug-in recycling time delay relay with full 10A DPDT contacts. It provides separate adjustment of ON and OFF time delays with two ten position DIP switches. Switch adjustment ensures accurate adjustment of the time delay the first time and every time. An accessory 8 pin socket required for mounting and connection.
(see accessory pages)
Technical Data

Output	10 A resistive at $120 / 240 \mathrm{~V} \mathrm{AC} \mathrm{\&} \mathrm{28} \mathrm{V} \mathrm{DC;}$ $1 / 3 \mathrm{hp}$ at $120 / 240 \mathrm{~V} \mathrm{AC}$
Rating	$3.2 \times 2.39 \times 1.78 \mathrm{in} .(81.3 \times 60.7 \times 45.2 \mathrm{~mm})$ Surface or 35 mm DIN rail mounting
Mechanical Package	

CT-ERD - $17.5 \mathrm{~mm}, 35 \mathrm{~mm}$ DIN Rail Mount, Delay on Make Timer
The CT-ERD series provides more load switching capacity, 6 amp , in a thinner 35 mm DIN mount package. Timing begins when control supply voltage is applied. The green LED flashes during timing When the time delay is complete, the output relay energizes and the green LED glows. If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

Technical Data

Time Ranges	7 time ranges $0.05 \mathrm{~s}-100 \mathrm{~h}$	1.) $0.05-1 \mathrm{~s}$ 2.) $0.5-10 \mathrm{~s}$ 3.) $5-100 \mathrm{~s}$	4.) $0.5-10 \mathrm{~min}$ 5.) $5-100 \mathrm{~min}$	6.) $0.5-10 \mathrm{~h}$ 7.) $5-100 \mathrm{~h}$
Output	AC12 (resistive) at 230 V AC15 (inductive) at 230 V	$\begin{aligned} & 6 \mathrm{~A} \\ & 3 \mathrm{~A} \end{aligned}$		
Mechanical Protection	Dimensions (W x H x D) Mounting enclosure / terminals	$17.5 \mathrm{~mm} \times 70 \mathrm{~mm} \times 58 \mathrm{~mm}(0.69 \times 2.76 \times 2.28$ inches $)$ DIN3 rail, snap-mounting (no tools required) IP50 / IP20		

Ordering Table

Series	Part Number	Voltage
CT-ERD.12	1SVR 500 100 R0000	$24-48$ V DC, 24-240 V AC

Multifunction Timers

CT-MFD Series DIN Rail Mounting
 Time Delay Relay SPDT (c/o) or DPDT (2 c/o)

- 7 Switch Selectable Functions
- 7 Switch Selectable Time

Ranges ($0.05 \mathrm{~s} . . .100 \mathrm{~h}$)

- SPDT or DPDT (2 c/o) contacts

■ Universal Voltage 12... 240 V AC/ DC; 3 Ranges

- Status Indication-2 LEDs

Connection

CT-MFD. 12

A1-A2 Input Voltage:
24-48 V DC or 24-240 V AC
15-16/18 1 SPDT (c/o) Contact
A1-Y1/B1 Initiate Switch S1 Input

The CT-MFD is a universal voltage, multifunction, DIN rail mount, SPDT or DPDT time delay relay. It includes 7 switch selectable popular functions and 7 switch selectable time delay ranges. The time delay is adjustable with an onboard trimmer. Featuring fast installation in control panels; snap onto DIN 3 rail and connect with IP20 screw terminals. LED indication shows input voltage applied, timing, and output energized.

Switch Selectable Time Ranges:

$1 \ldots .0 .05-1 \mathrm{~s}$
$2 \ldots .0 .5-10 \mathrm{~s}$
$3 \ldots .5-100 \mathrm{~s}$
$4 \ldots .0 .5-10 \mathrm{~min}$
$5 \ldots .5-100 \mathrm{~min}$
$6 \ldots .0 .5-10 \mathrm{~h}$
$7 \ldots . .5-100 \mathrm{~h}$

Function Selection Chart (see time diagrams)
1......Delay on Make (ON-delay)
2......Interval (Impulse ON)
3......Flasher/Recycling ON First
4......Flasher/Recycling OFF First
5......Delay on Break (OFF-delay)
6......Single Shot (Pulse Former)
7......Trailing Edge Interval (Impulse OFF)

CT-MFD. 21
A1-A2 Input Voltage:
12-240 V AC/DC
15-16/18 1 SPDT (c/o) Contact
25-26/28 1 SPDT (c/o) Contacts
A1-Y1/B1 Initiate Switch S1 Input

Technical Data

Timing Repeat Accuracy (constant parameters)	CT-MFD. 12	CT-MFD. 21
	< +/- 0.5\%	
Mechanical		
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)	. $69 \times 2.76 \times 2.28 \mathrm{in} .(17.5 \times 70 \times 58 \mathrm{~mm})$. $69 \times 3.15 \times 2.28$ in ($17.5 \times 80 \times 58 \mathrm{~mm}$)
Mounting	35 mm DIN Rail,	Tools Required
Degree of Protection	Enclosure IP50	Terminals IP20

Ordering Table

Series	Part Number	Input Voltage	Output Form	Output Rating (res./ind.)
CT-MFD.12	1SVR 500 020 R0000	$24-48$ V DC, 24-240 V AC	SPDT (c/o)	$6 \mathrm{~A} / 3 \mathrm{~A}$
CT-MFD.21	1SVR 500 020 R1100	$12-240$ V AC/DC	DPDT (2 c/o)	$5 \mathrm{~A} / 2 \mathrm{~A}$

Function Diagrams

CT-MFD Function Diagrams

Multifunction Timers

CT-MVS Series
Relay Output, $22.5 \mathrm{~mm}, 35 \mathrm{~mm}$ DIN Rail Mount

- Multifunction 10 Selectable Functions
- 10 Switch Selectable Time Ranges ($0.05 \mathrm{~s} . . .300 \mathrm{~h}$)
- 2 SPDT ($2 \mathrm{c} / \mathrm{o}$) contacts
- Selectable Instantaneous Contact
■ Universal Voltage 24... 240 V AC/DC
- Status Indication - 3 LEDs

Complete Product Details: httif $\mathrm{lil}_{\text {III }}$ www.ssac.com/pp1.htm

Description

Multi-function timer, 22.5 mm width on Din Rail, 11 selectable functions, 10 selectable time ranges, universal input voltage of 24 to 240 V AC and DC. Screwdriver adjustable time delay and switch selectable function and time range. Select output as either DPDT ($2 \mathrm{c} / \mathrm{o}$) timed contacts or SPDT (c/o) timed and SPDT (c/o) instantaneous contact. The time delay can be externally adjusted by connecting an accessory 50K ohm potentiometer.

Switch Selectable Time Ranges:

Function Selection Chart (see time diagrams) 1 - Delay on Make (ON-delay)
2 - Interval (Impulse ON)
3 - Flasher/Recycling ON or OFF First
4 - Delay on Break (OFF-delay)
5 - Trailing Edge Interval (Impulse OFF) 6 - Star Delta Starting (Interval/ON Delay) 7 - Delay on Make / Delay on Break (ON-delay / OFF-delay) 8 - Single Shot (Pulse Former)
9 - Accumulative Delay on Make (ON-delay) 10 - ON/OFF Test Function without time delays

Technical Data

Timing Repeat Accuracy (constant parameters)	$<+/-0.2 \%$
Output	4 A
AC12 (resistive) at 230 V	3 A
AC15 (resistive) at 230 V	$.89 \times 3.07 \times 3.94$ in. $(22.5 \times 78 \times 100 \mathrm{~mm})$
Mechanical	35 mm DIN Rail, no tools required
Dimensions (W $\times \mathrm{H} \times \mathrm{D})$	Enclosure IP50 Terminals IP20
Mounting	
Degree of Protection	

Ordering Table

Series	Part Number	Input Voltage
CT-MVS.21	1SVR 630 020 R0200	$24-240$ V AC/DC

CT-MVS Function Diagrams

7

Legend

V	$=$ Voltage	NO $=$ Normally Open
TD	$=$ Time Delay	$N C=$ Normally Closed
R	$=$ Reset	S1

OFF Delay Timers

CT-AHD and CT-ARS Series
 Relay Output, 35mm DIN Rail Mounting

Complete Product Details: httiffwww.ssac.com/pp1.htm

- Truerates on Loss of Power
- 7 Switch Selectable Time

Ranges ($0.05 \mathrm{~s} . . .10 \mathrm{~m}$)

- DPDT ($2 \mathrm{c} / \mathrm{o}$) contacts
- Universal Voltage
24...240V AC; ...48V /DC

■ Status Indication - 2 LEDs

CT-AHD - 17.5mm, DIN Rail Mounting, Delay on Break Timer

CT-ARS - 22.5mm, DIN Rail Mounting, True Delay on Break Timer

$1 \ldots \ldots .0 .05-1 \mathrm{~s}$	$5 \ldots . .5-100 \mathrm{~s}$
$2 \ldots \ldots .0 .15-3 \mathrm{~s}$	$6 \ldots \ldots .15-300 \mathrm{~s}$
$3 \ldots \ldots .0 .5-10 \mathrm{~s}$	$7 \ldots . .0 .5-10 \mathrm{~min}$

Connection

CT-ARS. 22
A1-A2 Input Voltage: 24-48 V DC 24-240 V AC
15-16/18 SPDT (c/o) Contact 25-26/28 SPDT (c/o) Contact

Switch Selectable Time Ranges:

$1 \ldots . .0 .05-1 \mathrm{~s}$	$5 \ldots .5-100 \mathrm{~min}$
$2 \ldots . .0 .5-10 \mathrm{~s}$	$6 \ldots .0 .5-10 \mathrm{~h}$
$3 \ldots . .5-100 \mathrm{~s}$	$7 \ldots .5-100 \mathrm{~h}$
$4 \ldots 0.5-10 \mathrm{~min}$	

Connection

CT-AHD. 12
A1-A2 Input Voltage: 24-48 V DC 24-240 V AC 15-16/18 SPDT (c/o) Contact A1-Y1/B1 Initiate Switch

Function

Timing	
Repeat Accuracy (constant parameters)	$<+/-0.5 \%$
Mechanical	$.69 \times 2.76 \times 2.28 \mathrm{in} .(17.5 \times 70 \times 58 \mathrm{~mm})$
Dimensions $(\mathrm{W} \times \mathrm{H} \times \mathrm{D})$	35 mm DIN Rail, No Tools Required
Mounting	Enclosure IP50 Terminals IP20
Degree of Protection	

Ordering Table

Series	Part Number	Input Voltage	Output Rating (res./ind.)
CT-AHD.12	1SVR 500 110 R0000	$24-48$ V DC, 24-240 V AC	$6 \mathrm{~A} / 3 \mathrm{~A}$

$\mathrm{NO}=$ Normally Open TD = Time Delay NC = Normally Closed N $\langle\zeta=$ Undefined Time

Technical Data

| Timing |
| :--- | :---: |
| Repeat Accuracy (constant parameters) |
| Typical Charge Time |
| Initial Charge Time |\quad| $<+/-0.2 \%$ |
| :---: |
| 200 ms |
| 5 min. |

- Adjustable Delays from $0.1 \mathrm{~s} . . .10 \mathrm{~min}$ in 3 Ranges ■ +/-0.5\% Repeat Accuracy - +/-5\% Factory Calibration - 1 A Solid State Output - Encapsulated

Complete Product Details:

Accessories

Ordering Table

Part Number	Time Delay	Adjustment	Function	Voltage	Accuracy
KSD1420	0.1... 10 S	External	Delay on Make (ON delay)	120 V AC	0.5\% or 20 mS
KSD1421	1... 100 S				0.5\%
KSD1423	0.1... 10 M				
KSD1430	0.1... 10 S	Onboard Adjust			0.5\% or 20 mS
KSD1431	$1 . .100 \mathrm{~S}$				0.5\%
KSD1433	0.1...10 M				
KSD2420	0.1..10 S	External	Interval (Single pulse)		0.5\% or 20 mS
KSD2421	1...100 S				0.5\%
KSD2423	0.1...10 M				0.5\%
KSD2430	0.1..10 S	Onboard Adjust			0.5\% or 20 mS
KSD2431	$1 . .100 \mathrm{~S}$				0.5\%
KSD2433	0.1...10 M				
KSDB420	0.1... 10 S	External	Delay on Break (OFF delay)		0.5\% or 20 mS
KSDB421	$1 \ldots 100 \mathrm{~S}$				0.5\%
KSDB423	0.1...10 M				
KSDB430	0.1... 10 S	Onboard Adjust			0.5\% or 20 mS
KSDB431	$1 . .100 \mathrm{~S}$				0.5\%
KSDB433	0.1..10 M				
KSDS420	0.1...10 S	External	Single Shot (One shot)		0.5% or 20 mS
KSDS421	1... 100 S				0.5\%
KSDS423	0.1..10 M				
KSDS430	0.1... 10 S	Onboard Adjust			0.5\% or 20 mS
KSDS431	1... 100 S				0.5\%
KSDS433	0.1... 10 M				

Universal Voltage Solid State Timing Modules

746

2 Universal Voltage Ranges From 24 ... 240 V AC/DC

- Switch Selectable Delays From 0.1 s ... 2.8 h in 3 Ranges or Factory Fixed
- +/-0.5\% Repeat Accuracy
- 1 A Steady - 10 A Inrush
- Totally Solid State and Encapsulated

Complete Product Details: httifhwww.ssac.com/pp1.htm

 240 V AC/DC
■ Knob or External Adjust Time Delays

- Delays from 0.1 ... 8 m
- Totally Solid State -

Encapsulated
■ 1 A Steady - 10 A Inrush
■ Two Terminal Series Connection with Load

TDU Series - Switch Adjustable, Universal Voltage Timers

Digi-Set Binary Switch Operation		
0.1...102.3	1... 1023	10...10,230
OFF ${ }^{\text {PON }}$	OFF $>$ ON	OFF - ON
$0.1=\square$	1 =	10= -
$0.2=\square$	$2=$	20=
$0.4=\square$	$4=$	$40=\square$
$0.8=\square$	$8=$	80=
$1.6=\square$	$16=$	160= 든
$3.2=\square$	$32=\square$	$320=\square$
$6.4=$	64= ㅁ.	640= 미
$12.8=$	$128=$ 민	1280=
$25.6=$	$256=$	2560= \square
$51.2=$ 띠	$512=\square$	$5120=$
6.3 S	544 S	3000 S

The TDU is an encapsulated solid state delay on make timer that combines digital timing circuitry with universal voltage operation. It offers DIP switch adjustment allowing accurate selection of the time delay over the full time delay range. Encapsulation protects against humidity, vibration, and dust making it suitable for outdoor equipment installations. This series is an excellent choice for OEM equipment where fast, positive adjustment, low cost and long life are important. .

Ordering Table

Part Number	Input Voltage	Time Range (seconds)	Repeat Accuracy	Tolerance
TDUL3000A	$24 \ldots 120 \mathrm{AC} / \mathrm{DC}$	$0.1 \ldots 102.3$		
TDUL3001A	$100 \ldots 240 \mathrm{AC} / \mathrm{DC}$	$0.1 \ldots 102.3$		
TDU3000A	$24 \ldots 120 \mathrm{AC} / \mathrm{DC}$	$1 \ldots 1023$	$+/-0.5 \%$ or 20 ms	$+/-10 \%$
whichever is greater	+			
TDU3001A	$100 \ldots 240 \mathrm{AC} / \mathrm{DC}$	$1 \ldots 1023$		
TDUH3000A	$24 \ldots 120 \mathrm{AC} / \mathrm{DC}$	$10 \ldots 10230$		
TDUH3001A	$100 \ldots 240 \mathrm{AC} / \mathrm{DC}$	$10 \ldots 10230$		

Specifications for TDU and TMV

Operation - TDU / TMV
Upon application of input voltage, the time delay begins. At the end of the time delay, the output energizes and remains energized until input voltage is removed.

Technical Data - TDU / TMV

Output	Solid state
Type	Normally Open, open during timing
Fife Span	100 million operations typical
Maximum Load Current	1 A steady state, 10 A inrush at $60^{\circ} \mathrm{C}$
Minimum Holding Current	40 mA
Mechanical	
Mounting	Surface mount with one \#10 $(\mathrm{M} 5 \times 0.8)$ screw
Package	$2 \times 2 \times 1.21 \mathrm{in} .(50.8 \times 50.8 \times 30.7 \mathrm{~mm})$
Protection	Encapsulated Circuitry
Termination	$0.25 \mathrm{in} .(6.35 \mathrm{~mm})$ male quick connect terminals

Dashed lines are internal connections. Load may be connected to terminal 3 or 1.

■ Accurate, Reliable, Life Cycle Timer; 100 Million Cycles Typical
■ Switch Settable Time Delays Both Times Adjustable

- +/-0.1\% Repeat Accuracy
- $+/-2 \%$ Setting Accuracy

■ 0.1 s ... 1023 h in 4 Ranges

- 12 ... 230 V in 5 ranges
- 1 A Solid State Output
- Totally Solid State and Encapsulated

Mounting Accessory

FS100 Series - Fixed Flash Rate - Low Cost

The FS100 Series may be used to control inductive, incandescent or resistive loads. This series offers a 1 A (fullwave) or a 2 A (halfwave) steady state, 10 A inrush solid state output. These totally solid state flashers are encapsulated to protect against, humidity, vibration and dust and they typically deliver 100 million flashes. Ideal for OEM applications where low cost and long life are important.

Technical Data

Mechanical	
Mounting	Removable mounting bracket, use one \#8 (M4 $\times 0.7)$ screw
Connection/Wires	18 AWG (0.82 mm 2$)$ wires $6 \mathrm{in} .(15.2 \mathrm{~cm})$
Package	$1.5 \times 0.94 \mathrm{in} .(38.1 \times 23.9 \mathrm{~mm})$

Ordering Table

Part Number	Input	Output Rating Steady / Inrush	Output Type	Load Type *
FS126	120 V AC	$1 \mathrm{~A} / 10 \mathrm{~A}$	AC, Fullwave	A
FS126RC				B
FS127		$2 \mathrm{~A} / 10 \mathrm{~A}$	AC, Halfwave	A
FS146	24 V AC	$1 \mathrm{~A} / 10 \mathrm{~A}$	AC, Fullwave	

* Load Type: A - Incandescent \& Resistive B - Incandescent, Resistive \& Inductive

RS Series - Solid State Recycling Timer - Switch Adjustable

The RS Series is a solid state, encapsulated, recycling timer designed for tough industrial environments. It is used by many testing labs as a life cycle tester; by others as a cycle controller. The RS Series has separate DIP switch adjustments for the ON delay and the OFF delay. These make possible accurate adjustment the first time and every time.

Add the value of switches in the ON position for the total time delay.

Technical Data

Output Maximum Load Current	1 A steady state, 10 A inrush at $60^{\circ} \mathrm{C}$
Mechanical	
Mounting	Surface mount with one \#10 $(\mathrm{M} 5 \times 0.8)$ screw
Package	$3 \times 2 \times 1.5$ in $(76.7 \times 51.3 \times 38.1 \mathrm{~mm})$
Termination	0.25 in. $(6.35 \mathrm{~mm})$ male quick connect terminals

Ordering Table

RS	X	X
Series	Input	Operating Sequence
	-1-12 V DC	-A - ON Time First
	-2-24 V AC	- ${ }_{\text {B - OFF }}$ Time First
	-3-24V DC	
	-4-120 V AC	
	-6-230 V AC	

${ }^{\dagger}$ Note: Grayed options are available in standard lead time.

Example P/N:

RS4A23 $=120 \mathrm{~V}$ AC operation, ON time first, T1 - ON time range $2, \mathrm{~T} 2$ - OFF time range 3
RS6B14 $=239 \mathrm{~V}$ AC operation, OFF time first, T1 - ON time range 1, T2 - OFF time range 4

Complete Product Details:

Mounting and Connection Accessories

DIN rail adaptor
 P/N: P1023-20

New: LED Indicates Phase Reversal

Technical Data

Sensing/Protection	
Phase Loss	$\geq 25 \%$ Unbalance
Response Time	$\leq 200 \mathrm{~ms}$
Over/Under Frequency Protection	Trip $\pm 4 \%$; Reset $\pm 3 \%$; 50 or 60 Hz
Output	
Rating	10 A resistive at $240 \mathrm{VAC} ; 8$ A resistive at 277 VAC ; N.O-1/4 hp at 120 V AC; $1 / 3 \mathrm{hp}$ at 240 V AC ;
Mechanical	
Mounting	Surface mount with one \#10 (M5 x 0.7) screw
Package	$3 \times 2 \times 1.5 \mathrm{in}$. $(76.7 \times 51.3 \times 41.7 \mathrm{~mm})$
Termination	Screw terminal connection for up to 12 AWG (3.3 mm) wire
Degree of Protection	Terminals IP20

Ordering Table

Part Number	Line Voltage	Output Form	Adj. Unbalance	Adj. Trip Delay	Adj. Restart
HLMUDRAAA	200 to 480 V AC	DPDT	2 to 10%	1 to 30 S	0.6 to 300 S

ANSI Device \#27/47/59

- Protects Against: Phase Loss, Phase Reversal, Over, Under and Unbalanced Voltages, Over/Under Frequency
- 35 mm DIN Rail or Surface Mounting
■ SPDT Isolated 10 A Relay Contacts
- N.O. Isolated 2A Relay Contact
- LED Indicates, Relay, Faults, \& Time Delays
- Universal Line Voltage

240 ... 480 V AC in One Unit

- Finger-safe Terminal Blocks, up to 12 AWG
- ASME A17.1 rule 210.6
- NEMA MG1 14:30, 14:35

■ IEEE C62.41-1991 Level B

Complete Product Details: httra/www.ssac.com/pp1.htm [iI]

Accessories

3-Pole Fuse Block P/N: FH3P
35mm DIN Rail Mounting

2 Amp Midget Fuse P/N: P0600-11

Improved Phase Loss Protection
Adjustable, 2 to 10\%, unbalance protection.

Anti-Short Cycle \& Staggered Restarting

0.6 to 300 s prevents rapid cycling. Allows staggered restarting
of multiple systems on a common power distribution network.
LED Indicates Phase Reversal
LED status indicator blinks red/green on phase reversal.

Prevents Nuisance Tripping

Adjustable trip delay from 1 to 30 Sec .

Universal Voltage Operation

In 3 ranges. Adjust to the motor's operating voltage and the unit automatically sets the over and under voltage trip points.

Cro.n.....
Upon application of line voltage, the output is de-energized and the restart delay begins. If all the three phase voltages are within the acceptable range, the output energizes at the end of the restart delay. The microcontroller circuitry automatically senses the voltage range, and selects the correct operating frequency (50 or 60 hz). The over and under voltage trip points are set at approximately $+/-10 \%$ of the adjusted line voltage. When the measured value of any phase voltage exceeds the acceptable range limits (lower or upper) the trip delay begins. At the end of the trip delay the output relay de-energizes. Under, over, and unbalanced voltages plus over or under frequency must be sensed for the complete trip delay before the unit trips. The unit trips in 200 ms when phase loss or reversal are sensed. The unit will not energize if a fault is sensed as the line voltage is applied. Both Delta and Wye systems can be monitored; no connection to neutral is required.
Reset: Reset is automatic upon correction of the voltage or frequency fault or phase sequence.

Connection

CAUTION: 2 amp max. fast acting fuses are recommended to protect the equipment's wiring. They are not required to protect the DLMU.
Dashed lines are internal connections.

L1, L2, L3 = Line Voltage Input
NO = Normally Open Contact NC = Normally Closed Contact
C = Common, Transfer Contact
Note: Relay contacts are isolated, 277 V AC max.

Technical Data

Phase Loss	
Response Time	$\leq 200 \mathrm{~ms}$
Trip Point	>=25\% Unbalance
Over/Under Frequency Trip / Reset	Trip +/- 4\%; Reset +/- 3\%; 50 or 60 Hz
Output	
SPDT (c/o) Rating	10 A resistive at $240 \mathrm{VAC} ; 8$ A resistive at 277 V AC ; N.O-1/4 hp at $120 \mathrm{~V} \mathrm{AC} ; 1 / 3 \mathrm{hp}$ at 240 V AC
N. O. SPST Rating	2 A resistive at 240 V AC
Mechanical	
Mounting	Surface mount with 2 \#8 (M4 $\times 0.7$) screw or snap on 35 mm DIN Rail
Package	$4.33 \times 2.95 \times 1.97 \mathrm{in} .(110 \times 75 \times 50 \mathrm{~mm})$
Termination	Screw terminals with captive wire clamps for up to \#14 AWG (2.5 mm2) wire
Degree of Protection	Terminals IP20 with protective covers installed

LED Flashing Table

Trip Delay	Red	ON/OFF	$120 \mathrm{FPM}^{*}$
Restart Delay	Green		$60 \mathrm{FPM}^{*}$
Phase Reversal	Red/Green	Alternate	$120 \mathrm{FPM}^{*}$
*FPM $=$ Flashes per minute			

Ordering Table

Part Number	Line Voltage	Output Form	Adj. Unbalance	Adj.Trip Delay	Adj. Restart
DLMUDRAAA	200 to 480 V AC	SPDT \& NO	2 to 10%	1 to 30 S	0.6 to 300 S

.

71 65

- Protects Against: Phase Loss, Phase Reversal, Overvoltage, Undervoltage, \& Unbalanced Voltages
■ Octal Plug-in with SPDT Isolated 10 A Contacts
- Operates from 200 ... 480 V AC
- LED Indicator Glows Green when Voltages are
Acceptable, Red for Faults
- Simple 3-Wire Connection for

Delta or Wye Systems
■ ASME A17.1 rule 210.6
■ NEMA MG1 14:30, 14:35
■ IEEE C62.41-1991 Level B

Complete Product Details:

 httri/www.ssac.com/pp1.htmMounting and Connection
Accessory

	35 mm
	Surface Mounting

Octal 8 pin socket
P/N: OT08PC
Must be rated for 600 V operation

Universal Operating Voltage 200-480 V AC; 50 \& 60 Hz

Improved Phase Loss Protection
Unbalance sensitivity assures improved phase loss protection not affected by regenerated voltages; knob adjustable 2 to 10% unbalance protection.

Prevents Nuisance Tripping
Adjustable 0.25 to 30 s trip delay prevents nuisance tripping.

Bicolor LED indicates relay status, delays, faults, and phase reversal.

Connection

2 amp fast acting fuses recommended to protect the equipment. They are not required to protect the PLMU.

$$
\begin{aligned}
\mathrm{F} & =\text { Fuses } \\
\emptyset \mathrm{A} & =\text { Phase } \mathrm{A}=\mathrm{L1} \\
\emptyset \mathrm{~B} & =\text { Phase } \mathrm{B}=\mathrm{L} 2 \\
\emptyset \mathrm{C} & =\text { Phase } \mathrm{C}=\mathrm{L3} \\
\mathrm{NO} & =\text { Normally Open } \\
\mathrm{NC} & =\text { Normally Closed } \\
\mathrm{C} & =\text { Common, Transfer Contact }
\end{aligned}
$$

Universal voltage operation and standard base connection allows the PLMU to replace hundreds of competitive part numbers.
The PLMU Series continuously measures the voltage of each of the three phases to provide protection for three phase motors and sensitive loads. Its microcontroller senses under and over voltage, voltage unbalance, phase loss, and phase reversal. Protection is provided even when regenerated voltages are present.

Operation

Upon application of power, a 0.6 s random start delay begins and the PLMU measures the voltage levels and line frequency and selects the voltage range. The output relay is energized and the LED glows green when all voltages are acceptable and the phase sequence is correct. LED flashes green during trip delay, glows red when output de-energizes. Undervoltage, overvoltage, and voltage unbalance must be sensed for continuous trip delay before the relay de-energizes. Reenergization is automatic upon fault correction. The output relay will not energize if a fault condition is sensed as three phase input voltage is applied. Line voltage is selected with the knob, setting the over and under voltage trip points. Voltage range is automatically selected by the insert as last sentence: Both Delta and Wye systems can be monitored; no connection to neutral is required.

Technical Data

Line Voltage Line Voltage	
Output	$200 \ldots 480 \mathrm{VAC}+/-15 \% ; 50 \ldots 60 \mathrm{~Hz}+/-2 \mathrm{~Hz}$
Rating	10 A resistive @ $240 \mathrm{~V} \mathrm{AC} ; 1 / 4 \mathrm{hp} @ 125 \mathrm{~V} \mathrm{AC} ; 1 / 3 \mathrm{hp} @ 250 \mathrm{~V} \mathrm{AC} ;$ max. voltage 277 V AC
Mechanical	
Mounting \& Connection	Requires an accessory plug-in socket rated 600 V AC
Package	$3.03 \times 2.39 \times 1.78$ in. $(77.0 \times 60.7 \times 45.2 \mathrm{~mm})$

Ordering Table

ANSI Device \#27/47/59

- Protects Against: Phase Loss \& Reversal; Over, Under \& Unbalanced Voltages; Short Cycling
- 10 Fault Memory \& Status Displayed on 6 LED Readout
- Switch Selectable Automatic Restart, Delayed Automatic Restart, \& Manual Reset
- Isolated 10 A SPDT Relay Contacts
- Part Instrument Part Control
- Pays For Itself During One Single Phasing Event
■ Universal Voltage Sensing Design Protects any Size Motor. From Fractional to 1200 Hp .

Complete Product Details: httrf/www.ssac.com/pp1.htm

Accessories

The WVM Series provides protection against premature equipment (motor) failure caused by voltage faults on the 3 Phase Line. The WVM's microcontroller design provides reliable protection even if regenerated voltages are present. It combines dependable fault sensing with a 10 fault memory and a 6 LED status display. Part instrument, part control, the WVM protects your equipment when you're not there and displays what happened when you return. The WVM is fully adjustable and includes time delays to prevent nuisance tripping and improve system operation. Time delays include a 0.25 to 30 s adjustable trip delay, an adjustable 0.25 to 64 m (in 3 ranges) restart delay, plus a unique 3 to 15 s true random start delay. The random start delay prevents voltage sags caused by simultaneous restarting of numerous motor loads after a power outage.

Technical Data

6 LED Status Pane

Displays current line status and faults in memory
Improved Phase Loss Protection
Unaffected by regenerated voltages, plus adjustable, 2 to 10%, unbalance protection.

Adjust to the Motor's Operating Voltage

The unit automatically sets the over and under voltage trip points.

Prevents Nuisance Tripping
Adjustable Trip Delay 0.25 to 30 Seconds
Switch Selectable Reset Method
Automatic with or without Restart Delay, or Manual Reset
A True Random Restart Delay
3 to 15 s delays the restart of protected motors until after momentary brownouts caused by lighting and heating loads have passed and the voltage stabilizes.

Anti-Short Cycling \& Staggered Restarting

Adjustable Restart Delay 0.25 s to 64 m prevents rapid cycling. Allows staggered restarting of multiple systems on a common power distribution system.

Connection

Phase Loss	$\geq 15 \%$ unbalance
Response Time	$\leq 200 \mathrm{~ms}$
True Random Start Delay	$3 \ldots 15 \mathrm{~s}$
Fault Memory	
Capacity	6 LEDs provide existing status \& memory readout
Status Indicators	10 A resistive @ 250 V AC;
Output \quad Rating	6 A inductive (0.4 PF) at 250 V AC
Mechanical	Screw terminals with captive wire clamps for up to \#12 AWG (3.2 mm2) wire
Termination	
Package Size	$6.9 \times 4.4 \times 2.4$ in (175.3 $\times 111.8 \times 2.4 \mathrm{~mm})$

Ordering Table

Part Number	Line Voltage	Output Form	Adj. Unbalance	Adj. Trip Delay	Adj. Restart
y WVM911AH	400 to 480 V AC	SPDT	2 to 10%	0.25 to 30 S	0.25 to 64 M

Phase Sequence Monitors

 CM-PFS SeriesUniversal Voltage DPDT Relay Output

- Monitoring of three-phase supply voltage for phase sequence
- Fast response time
- Universal voltage range $3 \times 200 \ldots 500 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ - DPDT contacts
- LED for status indication

CM -PFS Universal Voltage Phase Reversal Monitor

The CM-PFS phase sequence monitor is used to monitor three-phase supply voltages for incorrect phase sequence. The output relay energizes and the yellow LED turns on if all phases are present in the correct phase sequence (clockwise rotating field).
The relay de-energizes and the yellow LED turns off if incorrect phase sequence or complete loss of one phase is detected. If
used with motors which continue running on only two phases, the CM-PFS detects phase loss if the regenerated voltage is less than 60% of the nominal voltage. For applications where a regenerated voltage greater than 60% is expected, we recommend using our phase unbalance monitors.

Function

Connection

Technical Data

Output 11-12/14, 21-22/24 Rated switching voltage max.		Relay, 2 SPDT (c/o) contacts 250 V AC
Rated switching current	AC 12 (resistive)	4 A (at 230 V)
	AC 15 (inductive))	3 A (at 230 V)
General Data Mounting to DIN rail		35 mm DIN Rail Mounting, no tools required

Ordering Table

Part Number	Series	Line Voltage
1SVR 430 824 R 9300	CM-PFS	$200 \ldots .500 \mathrm{~V} \mathrm{AC} 50 / 60 \mathrm{~Hz}$

CM-ESS. 1 and CM-ESS. 2 are used for over or under voltage monitoring in single-phase AC and/or DC systems. The voltage to be monitored (measured value) is applied to terminals B-C. The output relay is normally de-energized.

If the monitored RMS voltage exceeds/drops below the adjusted threshold value, the output relay(s) energizes): on the CM-ESS. 1 immediately. The CM-ESS. 2 changes state after the set trip delay T_{V}. If the monitored RMS voltage exceeds/drops below the threshold value plus/minus the adjusted hysteresis, the output relays) de-energize(s).
The hysteresis is adjustable within a range of 3 to 30% of the threshold value.

Overcurrent monitoring

Undercurrent monitoring

Connection Diagrams

CM-ESS. 1

CM-ESS. 2

Note: CM-ESS. 2 has second set of SPDT contacts.
See the on-line data sheet for a complete set of function diagrams.

A1-A2	Input Voltage
B-C	Measuring Ranges
	$3-30 \mathrm{~V} ; 6-60 \mathrm{~V} ; 30-300 \mathrm{~V} ; 60-600 \mathrm{~V}$
$11_{15}-12_{16} / 14_{18}$	Output Contacts
$21_{25}-22_{26} / 24_{28}$	

Technical Data

Measuring Circuit Repeat Accuracy (constant parameters)	$+/-0.07 \%$ of Full Scale
Output	4 A
AC12 (resistive) at 230 V	3 A
AC15 (inductive) at 230 V	
Mechanical	$.89 \times 3.93 \times 3.07 \mathrm{in} .(22.5 \times 100 \times 78 \mathrm{~mm})$
Dimensions W $\times \mathrm{H} \times \mathrm{D}$	35 mm DIN Rail, no tools required
Mounting	Enclosure IP50 / Terminals IP20

Ordering Table

Voltage Window Monitoring Relays
CM－EFS． 2 Series
Single Phase AC／DC，DIN Rail Mounting

■ 3．．． 600 V DC／AC Voltage Monitoring in 4 Ranges
－RMS Measuring
－Each Unit Includes 4 Measuring Ranges：3－30 V； 6－60 V；30－300 V；60－600 V
■ Over and Under Voltage Monitoring
■ ON or OFF Delay Selectable
－Selectable Normally Open or Normally Closed Output
■ Selectable Latching Function
－Adjustable Trip Points for $\mathrm{V}_{\text {min }}$ and $V_{\text {max }}$
－Fixed Hysteresis of 5%
－Adjustable Trip Delay T_{v} 0．1－30 s
■ Select 2 SPDT（c／o）to Transfer Together or Separate Outputs for Over and Under Voltage
－ 22.5 mm Width
－ 3 LEDs for Status Indication

Complete Product Details： httrawww．ssac．com／pp1．htm IIII

DIP Switch Functions

1－ON＝OFF Delay
－OFF＝ON Delay
2 －ON Normally Energized OFF Normally De－energized
3 －ON Latching Function Activated OFF Latching Function Not Activated
4 －ON DPDT（2 c／o）Both Relays Transfer at the Same Time
OFF 1 SPDT（c／o）Transfers on Overvoltage， 1 SPDT（c／o）Transfer on Undervoltage

Connection

A1－A2	Input Voltage
B－C	Measuring Range：
	$3-30 \mathrm{~V} ; 6-60 \mathrm{~V} ; 30-300 \mathrm{~V} ; 60-600 \mathrm{~V}$
$11_{15}-12_{16} / 14_{18}$	Output Contacts
$21_{16}-22_{26} / 24_{28}$	

Technical Data

Measuring Circuit Repeat Accuracy（constant parameters）	$+/-0.07 \%$ of Full Scale
Output	4 A
AC12（resistive）at 230 V	3 A
AC15（inductive）at 230 V	
Mechanical	$.89 \times 3.93 \times 3.07 \mathrm{in} .(22.5 \times 100 \times 78 \mathrm{~mm})$
Dimensions W $\times \mathrm{H} \times \mathrm{D}$	35 mm DIN Rail，No Tools Required
Mounting	Enclosure IP50／Terminals IP20
Degree of Protection	

Ordering Table

Series	Part Number	Input Voltage－50／60 Hz	Adjustable Trip Delay T_{v}	Sensing Range	Output Form
CM－EFS．2	1SVR 430750 R0400	$24-240 \mathrm{~V} \mathrm{AC/DC}$	0 or $0.1-30 \mathrm{~s}$	AC／DC： $3-30 \mathrm{~V} ; 6-60 \mathrm{~V}$ $30-300 \mathrm{~V} ; 60600 \mathrm{~V}$	SPDT（c／o）

AC Current Sensing - Indication

- Toroidal Through Hole Wiring
- 0.5... 20 A Adjustable Trip Point
- Adjustable Trip Delay
- 10 A SPDT Isolated Output Contacts
- 5\% Trip Point Hysteresis (Dead Band)

Complete Product Details: httiflwww.ssac.com/pp1.htm [III

The ECS Series of Single Phase AC Current Sensors is a universal, overcurrent or undercurrent sensing control. Its built-in toroidal sensor eliminates the inconvenience of installing a stand-alone current transformer. Includes onboard adjustments for current sensing mode, trip point, and trip delay. Detects over or under current events like locked rotor, loss of load, an open heater or lamp load, or proves an operation is taking place or has ended.

Connection

Dashed lines are internal connections.
$V=$ Voltage $I>=$ Overcurrent $\quad \mathrm{L}=$ Undercurrent W = Insulated Wire Carrying Monitored Current

Function

TP = Trip Point $R=$ Reset $O C=$ Monitored Current NO = Normally Open Contact NC = Normally Closed Contact A = Sensing Delay On Start Up TD = Trip Delay

Technical Data

Sensor	
Maximum Allowable Current	Steady - 50 A turns; Inrush - 300 A turns for 10 s
Output	
Rating	10 A resistive at $240 \mathrm{~V} \mathrm{AC} ; 1 / 4 \mathrm{hp}$ at $125 \mathrm{~V} \mathrm{AC} ; 1 / 2 \mathrm{hp}$ at 250 V AC
Mechanical	
Mounting Termination	Surface mount with two \#6 (M3.5 x 0.6) screws 0.25 in . (6.35 mm) male quick connect terminals (5)

Ordering Table

Part Number	Input Voltage	Adjustable Set Point	Adjustable Trip Delay	Delay on Start
ECS40BC	120 V AC	$0.5 \ldots 5 \mathrm{~A} \mathrm{AC}$	$0.5 \ldots 20 \mathrm{sec}$	Fixed 1 sec
		$2 \ldots 2$		

LCS and LPM Current Flow Indication

The LCS10T12 connected to the LPM12 or LPMG12 indicator is a low cost, easy to use, go/no go indication system for the remote monitoring of current flow. The LCS10T12 is installed on an adequately insulated wire of the monitored load. Its 12 in . (30.4 cm) leads are connected to the LPM12 or LPMG12 panel mount indicator. When current flows through the monitored wire the LED indicator glows.

Connection

Technical Data

Current Range	2 ... 50 A AC				
	Wire Passes	Min. Current	Max. Current	Max. Inrush	Max. Wire Dia.
	1	5 A	50 A	120 A	0.355 in. (9.0 mm)
	2	2.5 A	25 A	60 A	$0.187 \mathrm{in} .(4.7 \mathrm{~mm})$
	3	1.7 A	16.6 A	40 A	0.15 in. (3.8 mm)
Maximum Current	50 ampere-turns continuous				
Mechanical	0.36 in. $(9.14 \mathrm{~mm})$ for up to \#4 AWG (21.1 mm 2) THHN wire				
Sensor Hole					

Ordering Table

Part Number	Description
LCS10T12	AC Current Sensor
LPM12	Red LED Indicator
LPMG12	Green LED Indicato

AC Current Sensor, PLC Interface Module

TCS / TSCA Series
AC Current Sensor / Current Transducer

Direct Connection to a PLC Digital Input Module

- 3 ... 50 V DC, 24 ... 240 V AC in 2 Ranges
- 1 A Steady - 10 A Inrush
- Adjustable Set Points - 2 ... 20 A
- Normally Open or Closed Solid State Output
- Complete Isolation Between Sensed Current \& Control Circuit

Complete Product Details:
httrf/www.ssac.com/pp1.htm

■ Monitors 0 ... 50 A in 4 Ranges

- Loop Powered from

10 ... 30 V DC
■ Linear Output from 4 ... 20 mA

- Zero and Span Adjustments
- Complete Isolation Between Sensed Current and Control Circuit

See accessory pages

TCS Series, Current Sensor

The TCS Series is a low cost method of GO/NO GO current detection. It includes a solid state output to sink or source current when connected directly to a standard PLC digital input module.
Normally Open: When a current equal to or greater than the actuate current is passed through the toroidal sensor, the output closes. When the current is reduced to 95% the output opens.
Normally Closed: When the current through the toroid is equal to or greater than the actuate current, the output opens. When the current is reduced below 95% the output closes.

Technical Data

Sensor	
Current to Actuate	$2 \ldots 20 \mathrm{~A}$, Guaranteed Range
Reset Current	$\cong 95 \%$ of the actuate current
Mechanical	$2 \times 2 \times 1.75 \mathrm{in} .(50.8 \times 50.8 \times 44.5 \mathrm{~mm})$
Package	$0.25 \mathrm{in} .(6.35 \mathrm{~mm})$ male quick connect terminals (2)
Termination	$0.36 \mathrm{in} .(9.14 \mathrm{~mm})$ for up to \#4 AWG $(21.1 \mathrm{~mm} 2)$ THHN wire
Sensor Hole	

Ordering Table

Part Number	Output Volts	Adjustable Set Point	Output Form
TCSGAA	3... 50 VDC 3... 50 VDC	2... 20 A AC	Normally Open
TCSGAB			Normally Closed
TCSHAA	24... 240 VAC 24... 240 VAC		Normally Open
TCSHAB			Normally Closed

Connection

 Function

TCSA Series, AC Current Transducer

Technical Data

Sensor Factory Calibration Repeat Accuracy	$+/-0.25 \%$ of full scale under fixed conditions
Mechanical	
Package	$2 \times 2 \times 1.75 \mathrm{in} .(50.8 \times 50.8 \times 44.5 \mathrm{~mm})$
Termination	0.25 in. $(6.35 \mathrm{~mm})$ male quick connect terminals

Ordering Table

Part Number	Current Range	Loop Voltage Range
TCSA5	$0 \ldots 5 \mathrm{~A}$	
TCSA10	$0 \ldots 10 \mathrm{~A}$	
TCSA20	$0 \ldots 20 \mathrm{~A}$	
TCSA50	$0 \ldots 50 \mathrm{~A}$	

CM-SRS. 1

CM-SRS. 2

CM-SRS. 1 and CM-SRS. 2 current monitoring relays can be used for overcurrent or undercurrent monitoring in single-phase AC and/or DC systems. These devices feature monitoring of true RMS values. The current to be monitored (measured value) is applied to terminals B1/ B2/B3-C.
If the measured value exceeds or drops below the selected trip point value, the output relay(s) energize: on the CM-SRS. 1 immediately, on the CM-SRS. 2 after the trip delay T_{v}. The relay de-energizes when the current returns to an acceptable level. The adjustable hysteresis prevents rapid cycling.
The hysteresis is adjustable 3 to 30% of the threshold value.

Overcurrent monitoring

Undercurrent monitoring

Note: CM-SRS. $2 x$ has second set of SPDT contacts. See on-line data sheet for the complete function diagrams

A1-A2	Input Voltage
B1-C	Measuring Range 1:3-30 mA or 0.3-1.5 A
B2-C	Measuring Range 2: $10-100 \mathrm{~mA}$ or 1-5 A
B3-C	Measuring Range 3: 0.1-1 A or 3-15 A
$11_{15}-12_{16} / 14_{18}$	Output Contacts
$21_{25}-22_{26} / 24_{28}$	

\qquad

Technical Data

Measuring Circuit Repeat Accuracy (constant parameters)	B1 / B2 / B3 - C
Output	$+-0.07 \%$ of Full Scale
AC12 (resistive) at 230 V	4 A
AC15 (inductive) at 230 V	3 A
Mechanical	

Mechanical
Dimensions $\mathrm{W} \times \mathrm{H} \times \mathrm{D}$ Mounting

CM-SRS. 2

A1	11_{15}	C
B1	B2	B3
14_{18}	12_{16}	A2

A 1	11_{15}	21_{25}
B 1	B 2	B 3
B 1 B 2 B 3	11_{15}	

$.89 \times 3.93 \times 3.07$ in. $(22.5 \times 100 \times 78 \mathrm{~mm})$ 35 mm DIN Rail Mounting, No Tools Required Enclosure IP50 / Terminals IP20

Ordering Table

Series	Part Number	Input Voltage - 50/60 Hz	Trip Delay T_{v}	Sensing Range	Output Form
CM-SRS. 11	1SVR 430840 R0200	24-240 V AC/DC	Without	$\begin{gathered} 3-30 \mathrm{~mA} ; \\ 10-100 \mathrm{~mA} ; 0.1-1 \mathrm{~A} \end{gathered}$	SPDT (c/o)
	1SVR 430841 R0200	110-130 V AC			
CM-SRS. 12	1SVR 430840 R0300	24-240 V AC/DC	Without	$\begin{gathered} 0.3-1.5 \mathrm{~A} ; \\ 1-5 \mathrm{~A} ; 3-15 \mathrm{~A} \end{gathered}$	SPDT (c/o)
	1SVR 430841 R0300	110-130 V AC			
CM-SRS. 21	1SVR 430840 R0400	24-240 V AC/DC	Adjustable 0 or 0.1-30 s	$\begin{gathered} 3-30 \mathrm{~mA} ; \\ 10-100 \mathrm{~mA} ; 0.1-1 \mathrm{~A} \end{gathered}$	2 SPDT (2 c/o)
	1SVR 430841 R0400	110-130 V AC			
CM-SRS. 22	1SVR 430840 R0500	24-240 V AC/DC	Adjustable 0 or 0.1-30 s	$\begin{gathered} 0.3-1.5 \mathrm{~A} ; \\ 1-5 \mathrm{~A} ; 3-15 \mathrm{~A} \end{gathered}$	2 SPDT (2 c/o)
	1SVR 430841 R0500	110-130 V AC			

Current Window Monitoring Relay

CM-SFS. 2 Series
Single-Phase AC/DC DIN Rail Mounting

The current window monitoring relays CM-SFS. 2 can be used for the simultaneous monitoring of over and under current in single-phase AC and/or DC systems. A true RMS sensing method is used. The 2 SPDT ($2 \mathrm{c} / \mathrm{o}$) output relays can be set to transfer together or operate as separate outputs for over and under current. The current to be monitored is connected to terminals B1/B2/B3-C. Normally de-energized or normally energized output as well as an adjustable ON or OFF trip delays and a latching output after a fault trip, are selectable.
When the latching function is selected, the output relays remain latched until the input voltage is removed. (see On-Line Data Sheet for details)
Function
een LED

Connection

A1	11_{15}	21_{25}
B1	B2	B3
14_{18}	12_{16}	C
24_{28}	22_{26}	A2

Over and Under Current Monitoring
■ ON or OFF Delay Selectable

- Selectable Normally Open or Normally Closed Output
■ Latching Function Selectable
- Adjustable Trip Points for $I_{\text {min }}$ and $I_{\text {max }}$
- Adjustable Hysteresis of 5 \%
- Start-up delay TS

Adjustable 0; 0.1-30 s

- Adjustable Trip Delay 0.1-30 s
- Select 2 SPDT (c/o) Transfer Together or Separate Outputs for Over and Under Current
- 22.5 mm width
- 3 LEDs for status indication

A1-A2	Input Voltage
B1-C	Measuring Range 1: 3-30 mA or 0.3-1.5 A
B2-C	Measuring Range 2: $10-100 \mathrm{~mA}$ or 1-5 A
B3-C	Measuring Range 3: 0.1-1 A or 3-15 A
$11_{15}-12_{16} / 14_{18}$	Output Contacts
$21_{16}-22_{26} / 24_{28}$	

NOTE: See Data Sheet for A Complete Set of Function Diagrams

DIP Switch Functions

1-ON = OFF Delay (Function Shown) - OFF = ON Delay

2 - ON Normally Energized OFF Normally De-energized

3 - ON Latching Function Activated OFF Latching Function Not Activated
4- ON = DPDT ($2 \mathrm{c} / \mathrm{o}$) Both Relays Transfer at the Same Time OFF $=1$ SPDT (c/o) Transfers on Overvoltage, 1 SPDT (c/o) Transfer on Undervoltage

Technical Data

Measuring Circuit Repeat Accuracy (constant parameters)	$+/-0.07 \%$ of full scale
Output	4 A
AC12 (resistive) at 230 V	3 A

Mechanical

Dimensions W x H x D Inches (mm) Mounting
$.89 \times 3.93 \times 3.07 \mathrm{in} .(22.5 \times 100 \times 78 \mathrm{~mm})$ 35 mm DIN Rail, No Tools Required Degree of Protection Enclosure IP50 / Terminals IP20

Ordering Table

Series	Part Number	Input Voltage - 50/60 Hz	Trip Delay T_{v}	Sensing Range	Output Form
CM-SFS. 21	1SVR 430760 R0400	24-240 V AC/DC	Adjustable 0 or 0.1-30 s	$\begin{gathered} 3-30 \mathrm{~mA} ; \\ 10-100 \mathrm{~mA} ; 0.1-1 \mathrm{~A} \end{gathered}$	2 SPDT (2 c/o)
CM-SFS. 22	1SVR 430760 R0500			$\begin{gathered} 0.3-1.5 \mathrm{~A} ; \\ 1-5 \mathrm{~A} ; 3-15 \mathrm{~A} \end{gathered}$	

- Dual Probe Level Control for Conductive Liquids
- Onboard Knob Adjust Sensing up to $100 \mathrm{~K} \Omega$
- Select Fill or Drain Operation

■ LED Indicator Reduces Adjustment Time
■ 5 A SPDT Isolated Contacts

Complete Product Details: httif/Wwww.ssac.com/pp1.htm

- Provides Equal Run Time for Two Motors
- Alternating or Electrically Locked Operation
- Low Profile Selection Switch
- 10 A Relay Contacts
- LED Status Indication
- Industry Standard Base Connection
Mounting and Connection
Accessories

35 mm DIN rail or surface mounting

Octal
8 pin socket
P/N: NDS-8

Electrode

 P/N: PHST-38QTNLevel probe P/N: LLP-24

LLC5 Series Plug-in, Dual Probe, Liquid Level Control

The LLC5 provides dual probe conductive liquid level control in a convenient octal plug-in package. Transformer isolated AC voltage on the probes prevents electrolytic plating. Less than 1 mA of current is used to sense the presence of conductive liquid between the probes and common. The sensitivity adjustment eliminates false tripping caused by floating debris and foaming agents.

Operation

Drain (Pump Down Mode): When the liquid level rises and touches the high level probe, the output relay energizes and remains energized until the liquid level falls below the low level probe.

Fill (Pump Up Mode): When the liquid level falls below the low level probe, the output relay energizes and remains energized until the liquid level rises and touches the high level probe.

Technical Data

Connection

Connect common to conductive tank.
HP = High Level Probe LP = Low Level Probe $\mathrm{C}=$ Probe Common $\mathrm{V}=$ Voltage

Dashed lines are internal connections. Accessory sensing probes are required.

Output	
Rating	5 A resistive at $240 \mathrm{~V} \mathrm{AC} ; 1 / 10 \mathrm{hp}$ at 240 V AC
Mechanical Mounting and Connection Package	35 mm or surface mounting, requires an accessory 8 pin (Octal) socket
$3.2 \times 2.39 \times 1.78 \mathrm{in} .(81.3 \times 60.7 \times 45.2 \mathrm{~mm})$	

Ordering Table

Part Number	Voltage	Function	Adjustable Range (ohms)
LLC54AA	120 VAC	Drain	$0 . .100 \mathrm{~K}$
		Fill	

ARP Series Plug-in, Alternating and Duplexing Relay

The ARP Series is used in systems where equal run time for two motors is desirable. The selector switch allows selection of alternation or either load for continuous operation. The LED's indicate the status of the internal relay and which load is selected to operate. This versatile series may be front panel mounted (BZ1 accessory required) or 35 mm DIN rail mounted with an accessory socket.

DPDT 8 Pin Cross Wired

Duplexing (Cross Wired): Duplexing models operate the same as alternating relays and when both the Control (S1) and Lag Load (S2) Switches are closed, Load A and Load B energize simultaneously.
The DPDT 8-pin, cross wired option, allows extra system load capacity through simultaneous operation of both motors when needed. Relay contacts are not isolated.
$\mathrm{V}=$ Voltage $\mathrm{LA}=$ Load A LB = Load B
S1 = Primary Control Switch S2 = Lag Load Switch Dashed lines are internal connections.
Note: S1 and S2 must be rated for the Load
(LA \& LB) voltage and current.

Technical Data

Output	
Rating	10 A resistive at $120 / 240 \mathrm{~V} \mathrm{AC} \mathrm{and} 28 \mathrm{~V} \mathrm{DC;}$
$1 / 3 \mathrm{hp}$ at $120 / 240 \mathrm{~V} \mathrm{AC}$	
Mechanical Mounting and Connection Package	35m or surface mounting, requires an accessory 8 pin (Octal) socket $3.2 \times 2.39 \times 1.78$ in. $(81.3 \times 60.7 \times 45.2 \mathrm{~mm})$

Ordering Table

Part Number	Voltage	Function	Adjustment
ARP43S	120 VAC	Cross Wired Duplexor	Selector Switch

See accessory pages

Liquid Level - Motor Winding Temperature Monitors CM-ENS UP/DOWN / CM-MSS SPDT (c/o) Relay Output

Complete Product Details:

 httra/www.ssac.com/pp1.htm (III)

c (UL us
 LISTED

- 1 PTC Circuit
- Automatic or Manual Reset
- Broken Wire Detection
- Remote Reset Terminals
- 2 SPDT ($2 \mathrm{c} / \mathrm{o}$) Contacts
- 2 LED's for Status Indication
- 22.5 mm wide enclosure,
- 35mm DIN Rail Mounting

The CM-ENS UP/DOWN monitors levels of conductive liquids, and is used for liquid level control in pump systems.
The CM-ENS senses the difference in the resistance of the liquid and air, to determine the liquid level The output relay's function fill (UP) or drain (DOWN) is switch selectable. If the "UP" function is selected, the output relay is energized until the liquid touches the upper probe. If the "DOWN" function is selected, the output relay energizes until the liquid level falls below the Min probe.

1 Function Selector Switch:
UP - Fill
DOWN - Drain
2 Adjustable Sensitivity from 5 to
100K ohms
3 R: Yellow LED - Relay Status
4 U: Green LED - Input Voltage
Compact Package

Function

When using a metal tank the C electrode is not required. In this case the cable can be connected directly to the metal surface of the tank.

Technical Data

Output	
Rating - AC12 (resistive) 230 V	4 A
Rating - AC15 (inductive) 230 V	3 A
Mechanical	
Dimensions	$3.94 \times 3.07 \times 0.89$ in (100×78×22.5mm)
Degree of Protection	Enclosure IP50 / Terminals IP20

Connection

A1-A2 Input voltage Ground reference electrode MAX Maximum level
MIN Minimum level
11-12/14 Output contacts

Ordering Table

Part Number	Series	Input Voltage
1SVR 430 851 R0200	CM-ENS UP/DOWN	$110-130 \mathrm{~V} \mathrm{AC}$

CM-MSS (2) Thermistor Motor Protection Relay - 1 PTC Sensor Circuit

The CM-MSS (2) is designed to protect motor windings from overheating and failure by sensing the temperature with an embedded PTC thermistor. Selection of the protection relay is independent of motor size, Hp rating, insulation class and starting method.
The three or more PTC winding sensors are

1 Manual Reset Button
2 F: Red LED - Fault Tripped
3 U: Green LED - Input Voltage Applied
4. 2 SPDT ($2 \mathrm{c} / \mathrm{o}$) Output Contacts
5. Compact package

Technical Data

Output	Res. $4 \mathrm{~A} /$ Ind. 3 A
Rating	
Mechanical Dimensions Degree of Protection	$3.94 \times 3.07 \times 0.89 \mathrm{in}.(100 \times 78 \times 22.5 \mathrm{~mm})$ Enclosure IP50 / Terminals IP20

Ordering Table

Part Number	Series	Input Voltage
1SVR 430 811 R9300	CM-MSS	24 V AC
1SVR 430 811 R0300		110130 V AC

Tower and Obstruction Lighting Controls Controls for Incandescent and LED Lamps Flashers, Photo Control, Alarm Relays

Flasher - Solid State Beacon Flasher

Part Number	Voltage	Note	Description
FS155-30RF	120 V AC	2500 W(200 A Inrush Maximum)Meets FAA-ACNo. 150/5345-43E	Beacon Flasher for High RF Installations
FS-155-30T			Beacon Flasher for FM, TV, Chimneys, Bridges, Smoke Stacks, and Low RF Applications
FA155-2		2500 W(200 A Inrush Maximum)	Auxiliary Unit for Synchronous Flashing of Additional Beacons
FA155			Auxiliary Unit Provides Alternate Operation for Constant Line Loading

Photo Control - Accurate Dusk to Dawn Control

Part Number	Voltage	Note	Description
PCR10	120 V AC	Meets FAA-AC No. 150/5345-43E	Precision Photo Control Calibrated to FAA and FCC Specifications for Tower and Obstruction Lighting. Two SPST N.O. 20 A Contacts. Without Cast Aluminum Housing.

Lamp Alarm Relays - Senses Lamp Failure

Part Number	Voltage	Note	Description
SCR430T	120 V AC	$\begin{aligned} & \text { Meets FAA-AC } \\ & \text { No. } 150 / 5345-43 E \end{aligned}$	Universal Light Alarm Relay; Senses the Failure of One Lamp Out of 1, 2, 3, or 4 Lamps; 116 or 620 W, 120 V AC Incandescent Lamps; SPDT - 10 A Isolated Alarm Contacts.
SCR9L	120/230 V AC		Universal LED Lamp Alarm Relay; Senses the Failure of 1 Lamp out of 1 to 8 Lamps; Works with LED Beacons or Side Lamps; 1 SPDT \& 1 SPNO Alarm Contacts.

Beacon Alarm Relay - Senses Lamp Failure and Flasher Failure

Part Number	Voltage	Note	Description
FB120A	120 V AC	$\begin{gathered} \text { Meets FAA-AC } \\ \text { No. } 150 / 5345-43 E \end{gathered}$	Flasher and Incandescent Beacon Lamp Alarm Relay; Senses Failure of Incandescent Beacon Lamps and Beacon Flasher; Two Line Voltage Alarm Outputs; SPDT - 10 A Isolated Alarm Contacts
FB9L	120/230 V AC		Universal LED Beacon Lamp \& Flasher Alarm Relay; Senses failure of 1 lamp out of 1 to 8 LED Beacons; 1 SPDT \& 1 SPNO Alarm Contacts; 0.5A Solid State Bypass Relay Output

Accessories

Mounting and Connection Sockets

DIN Rail or Surface Mount Sockets
8 Pin Octal Socket (600 VAC)
P/N: OT08PC
8 pin 35 mm DIN rail or surface mount socket. OT08PC is rated at 10 A at 600 VAC and has pressure clamp terminals. Select this socket for use with plug in three phase voltage monitors. For use with AWG 12 to 22 (3.2 to $0.33 \mathrm{~mm}^{2}$) wire sizes. Hold-down clips not available.

Dimensions:
$1.60 \mathrm{~W} \times 2.1 \mathrm{I} \times .97 \mathrm{~h}$ in. $(40.6 \times 53.3 \times 24.6 \mathrm{~mm})$

8 Pin Octal Socket (300 VAC)

P/N: NDS-8
May be surface mounted with two \#6 (M 3.5×0.6) screws or snaps onto a 35 mm DIN rail. A spring mechanism allows easy removal. Screw terminals with captive wire clamps accept up to two \#14 AWG ($2.45 \mathrm{~mm}^{2}$) wires. Rated 10 A at 300 V AC. Uses PSC8 hold-down clips.
Dimensions:
$1.60 \mathrm{~W} \times 2.03 \times .85 \mathrm{~h}$ in. $(40.6 \times 51.6 \times 21.6 \mathrm{~mm})$

11 Pin Magnal Socket

P/N: NDS-11
May be surface mounted with two \#6 (M 3.5×0.6) screws or snaps onto a 35 mm DIN rail. A spring mechanism allows easy removal. Screw terminals with captive wire clamps accept up to two \#14 AWG ($2.45 \mathrm{~mm}^{2}$) wires. Rated 10 A at 300 V AC. Uses PSC11 hold-down clips.
Dimensions:
$1.80 \mathrm{~W} \times 2.03 \times 1.25 \mathrm{~h}$ in. $(45.7 \times 51.6 \times 31.8 \mathrm{~mm})$

Hold-Down Clips

P/N: PSC8
PSC11
Securely mounts plug in controls in any position. Also provides protection against vibration. Select the PSC8 for use with NDS-8 or the PSC11 for use with NDS-11 sockets. Comes in sets of two.

Surface Mount Sockets

8 Pin Octal Socket (600 VAC)
P/N: P1011-6
8 pin surface mount socket with binder head screw terminals. Rated 10 A at 600V AC. Select this socket for use with plug in three phase voltage monitors. When used with TDM, TDB, TDS Series timers the combination is UL Listed. Uses PSCRB8 hold-down brackets.

Hold-Down Brackets

P/N: PSCRB8
Designed for use with P1011-6 socket. Securely mounts 8 pin plug-in controls in any position, and provides protection against vibration. Comes in sets of two.

Dimensions:
2.0 W x $2.25 \times .63 \mathrm{~h}$ in. $(50.8 \times 57.2 \times 15.9 \mathrm{~mm})$

Front Panel Mount Kit

P/N: BZ1
Provides an easy method of through-the-panel mounting of 8 or 11 pin plug-in timers, flashers, and other controls. May be mounted in panels up to 0.125 in . (3.2 mm) thick. Includes two clamps and two screws.

DIN Rail Mount Adaptor

P/N: P1023-20

Allows any $2 \times 2 \mathrm{in} .(50.8 \times 50.8 \mathrm{~mm})$ or $2 \times 3 \mathrm{in} .(50.8 \times 76.2 \mathrm{~mm})$ module to be mounted on a 35 mm DIN type rail. Comes complete with mounting hardware for $0.75 \mathrm{in} .(19 \mathrm{~mm})$ and $1 \mathrm{in} .(25.4 \mathrm{~mm})$ thick modules.

Illustrates panel opening size required to mount BZ1.

Versa-Pot

Panel mountable, industrial potentiometer recommended for remote time delay adjustment. The shaft is slotted for screwdriver adjustment and serrated for slip-proof finger adjustment. Accepts Versa-Knob or Lock Shaft. May be ordered with two $8 \mathrm{in} .(20.3 \mathrm{~cm})$ wires soldered to pot (clockwise increase) and female quick connect terminals on other ends by adding suffix $-X$ to end of part number.

Ordering Table

Part Number	Value (Ohms)	With Wire Leads
P1004-95	100 K	No
P1004-95-X		Yes

Technical Data

Rating	0.25 W at $55^{\circ} \mathrm{C}$
Taper	Linear
Shaft Rotation	$300^{\circ}+/-5^{\circ}$
Tolerance	$+/-10 \%$

Versa-Knob

P/N: P0700-7

Versa-Knob is designed for 0.25 in (6.35 mm) shaft of Versa-Pot or Q-Pot. Semi-Gloss industrial black finish.

Time Adjustment Dials

Dials for use with remote Versa-Pot. Reverse screen printed on clear plastic to avoid damage to printed image.

Accessories

Liquid Level Probes and Probe Holders

7

FH3P does not include P0600-11 fuses

Complete Product Details:
httif www.ssac.com/pp1.htm

ABB
 Control relays
 Type N, NE, NL \& TNL
 Positive safety AC/DC operated

Description

There are many applications where safety is very critical and it is important to use electrical equipment which ensures that dangerous machine movement cannot occur when a fault is detected with the moving contacts during the cycle which the fault is indicated.

Regulations and standards have been written to ensure that safety is maintained:

- United States ANSI B11.19-1990
- Germany SÜVA

ZH1/457
INRS

- United Kingdom BIA
- Switzerland SA

The ABB Type N \& NL 4 and 8 pole relays are designed with "Positive Guided" contacts and fulfill the regulations or standards shown. The relays can provide positive safety for the N.O. and N.C. contacts which assure that the N.O. contacts will not close before any N.C. contact opens. Therefore, if one of the contacts weld due to abnormal conditions in the control circuit, the other contacts will also remain in the same position as when the welding occurred. This means that the open contacts must maintain an air distance 0.5 mm when the coil is energized at 110% Vc or when it is de-energized.
UL File No: E39231 (N \& NL)

General information

Type N, AC operated

Description

- AC operated with laminated magnetic circuit.
- 2 versions: 4 pole or 8 pole. The width of 8 pole devices is identical to that of 4 pole devices; only the depth is increased.
- Side by side mounting possible.
- Self cleaning auxiliary contacts.
- Alone or by itself or with a 4 pole CA5 auxiliary contact block, these devices offer "positive safety" between their auxiliary contacts.

Application

Type N control relays are used for switching auxiliary circuits and control circuits.

Holes for screw mounting (screws not supplied). Distances between holes according to EN50 002.

Quick mounting on $35 \times 7.5 \mathrm{~mm}$ DIN mounting rail according to IEC715 and EN50 022.

Location of side mounted accessories: mounting on right or left hand side.

Terminals delivered in open position with captive screws (screws of unused terminals should be tightened).
Screwdriver guidance for all screws makes it possible to use motorized screwdrivers.
All terminals provide protection against accidental direct contact with live parts according to VDE0106 - Part. 100 and offer IP 20 degree of protection according to IEC947-1.

Catalog number explanation Frame type

Coil voltage selection chart

Hz																	
	Relay type	12	24	48	110	120	125	208	220	240	277	380	415	440	480	500	600
60	N		81	83	84	84		34	36	80	42		86	86	51	53	55
50	N		81	83	84				80			85	86			55	
DC	NE, NL	80	81	83	86		87		88	89							

General information
 Type NE, DC operated

Description

- Contactor relays with laminated magnet circuit and double-winding coil fed from a DC supply via a built-in N.C. lagging auxiliary contact.
- 1 -stack version with three built-in auxiliary contacts.
- Self-cleaning auxiliary contacts
- Alone or fitted with a 4-pole CA5 auxiliry contact block, these devices offer mechanically linked contacts.
- Side by side mounting possible.

Application

NE... contactor relays are used for switching auxiliary circuits and control circuits.

Catalog number explanation

NE 12E-84
Frame type \qquad

Coil voltage
(see coil voltage chart below)
Contact configuration \qquad

Coil voltage selection chart

Hz	Relay type	12	24	48	110	120	125	208	220	240	277	380	415	440	480	500	600
60	N		81	83	84	84		34	36	80	42		86	86	51	53	55
50	N		81	83	84				80			85	86			55	
DC	NE, NL	80	81	83	86		87		88	89							

General information
Type NL \& TNL, DC operated

Type NL

Description

- Magnetic circuit variants: NL types: d.c. operated with solid magnetic circuits.
- 2 versions: 4 pole or 8 pole

The width of 8 pole devices is identical to that of 4 pole devices; only the depth is increased.

- Bifurcated auxiliary contacts.
- Alone or mounted with a 4 pole CA5 auxiliary contact block, these devices offer "positive safety" between their auxiliary contacts.

Application

Type NL control relays are used for switching auxiliary circuits and control circuits.

Type TNL
Description

- Magnetic circuit variants
- NL types: D.C. operated with solid magnetic circuits.
- TNL types: D.C. operated with solid magnetic circuit and large coil voltage range.
- 2 versions
- 4-pole/1-stack or 8-pole/2-stack
- The width of 8-pole devices is identical to that of 4 pole devices; only the depth is increased.
- Double sharp auxiliary contacts.
- Alone or mounted with a 4-pole CA 5 auxiliary contact block, these devices offer "positive safety" between their auxiliary contacts.

Application

Type NL and TNL control relays are used for switching auxiliary circuits and control circuits.

Location of surge suppressors.
 Clear marking of coil voltages.

Quick mounting on $35 \times 7.5 \mathrm{~mm}$ or $35 \times 15 \mathrm{~mm}$ DIN mounting rail according to IE715 and EN50022.

Holes for screw mounting (screws not supplied). Distances between holes according to EN50002.

Terminals delivered in open position with captive screws (screws of unused terminal should be tightened).
Screwdriver guidance for all screws makes it possible to use motorized screwdrivers.
All terminals provide protection against accidental direct contact with live parts according to VDE0106 - Part. 100.

Catalog number explanation

 (T)NL 44E-84| Frame type | |
| ---: | :--- |
| Contact configuration | $(T) N L$ |\quad| Coil voltage |
| :--- |
| (see coil voltage chart below.) |

Coil voltage selection chart

Hz																
	Relay type	12	24	48	110	120	125	208	220	240	277	380	415	440	480	500
6000																
60	N		81	83	84	84		34	36	80	42		86	86	51	53
50	N		81	83	84				80			85	86			55
DC	NE, NL	80	81	83	86		87		88	89						

Type N \& NL

AC \& DC operated

A.C. operated

Contact configuration N.O.		C.C.	Catalog number
4	0	N40E-84	List price
3	1	N31E-84	$\mathbf{\$ 6 0}$
2	2	N22E-84	
4	4	N44E-84	
5	3	N53E-84	
6	2	N62E-84	$\mathbf{1 2 0}$
7	1	N71E-84	
8	0	N80E-84	

Coil voltage selection
All AC operated catalog numbers include a 120VAC coil. All DC operated catalog numbers include a 110VDC coil. To select other coil voltages, substitute the code from the Coil Voltage Selection Chart for the first digit after the last dash in the catalog number.
Ex.: A 240 V coil is required for an N80 control relay: N80E-80
Coil voltage selection chart

| Hz | Relay
 type | 12 | 24 | 48 | 110 | 120 | 125 | 208 | 220 | 240 | 277 | 380 | 415 | 440 | 480 | 500 | 600 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 60 | N | | 81 | 83 | 84 | 84 | | 34 | 36 | 80 | 42 | | 86 | 86 | 51 | 53 | 55 |
| 50 | N | | 81 | 83 | 84 | | | | 80 | | | 85 | 86 | | | 55 | |
| DC | NE, NL | 80 | 81 | 83 | 86 | | 87 | | 88 | 89 | | | | | | | |

D.C. operated

Contact configuration N.O.		N.C.	Catalog number
4	0	List price	
3	1	NL40E-86	
2	2	NL31E-86	$\mathbf{\$ 7 2}$
4	4	NL22E-86	
5	3	NL44E-86 ©	
6	2	NL53E-86 ©	
7	1	NL62E-86 ©	$\mathbf{1 4 4}$
8	0	NL71E-86	
1	2	NL80E-86	
2	1	NE12E-86	
3	0	NE21E-86	
4	3	NE30E-86	
5	2	NE43E-86 ©	
6	1	NE52E-86 ©	
7	0	NE61E-86 ©	$\mathbf{1 4 4}$

Block diagrams for NE... contactor relay coil supply

Coil supply Uc <110 VDC

Coil supply via built-in varistor UC ≤ 110 VDC

Type TNL

4 Pole \& 8 Pole

4 Pole, 1 stack

Number of contacts				Weight	Catalog number	List price
1st N.O.	$\begin{aligned} & \text { ack } \\ & \text { N.C. } \end{aligned}$	2nd N.O.	N.C.			
2	2	-	-	0.540	TNL22E- \triangle	
3	1	-	-	0.540	TNL31E- \triangle	\$ 121
4	-	-	-	0.540	TNL40E- \triangle	

8 Pole, 2 stack

Number of contacts				Weight	Catalog number	List price
1st stack		2nd stack				
		N.O	N.C.			
4	-	-	4	0.600	TNL44E- \triangle	
4	-	2	2	0.600	TNL62E- \triangle	\$ 180

Δ - Substitute the Δ for the coil voltage code. See the Type TNL Coil voltage Selection chart beneath the photos.
Coil characteristics
Coil voltage selection
No extra tolerances applicable to the U_{C} min. ... max.
values quoted in the Coil voltage selection table

Min. UC Max	Voltage
$17-32$	51
$24-45$	52
$36-65$	54
$42-78$	58
$50-90$	55
$77-143$	62
$90-150$	66
$152-264$	68

Mounting distance - for coil operating limits U_{C} min. $\ldots U_{c}$ max.

A mm	B mm	Ambient temp. ${ }^{\circ} \mathrm{C}$	Max. switching frequency Operating cycles $/ \mathrm{h}$
2	20	≤ 20	1200
5	20	≤ 55	1200

Add-on accessories

Control relays							CA5-10	CA5-01	CA5-40
CA5-31	CA5-22	CA5-04	Timer TP	Mechanical interlock	Label marker				
Pos. 1, 3 or 4 TNL 40-E	4	2	1	1	1	-	-	VBC 30	BA 5-50
Pos. 1, 3 or 4 TNL 31-E	4	1	1	1	-	-	-	VBC 30	BA 5-50
Pos. 1, 3 or 4 TNL 22-E	4	-	1	-	-	-	-	VBC 30	BA 5-50
Pos. 1 $\pm 30^{\circ}$ TNL - all types	-	-	-	-	-	-	-	VBC 30	BA 5-50

Mounting positions

Accessories

Type N, NL \& TNL

Auxiliary contact blocks

Positioning	$\begin{aligned} & \text { Contacts } \\ & \text { N.O. N.C. } \end{aligned}$		Catalog number	List price
N, NE, NL, TNL (front mount)	1	$\overline{1}$	$\begin{aligned} & \text { CA5-10 } \\ & \text { CA5-01 } \end{aligned}$	\$ 15
N, NL, NE, TNL (4 pole)	4 2 -	$\begin{aligned} & - \\ & 2 \\ & 4 \end{aligned}$	CA5-40N CA5-22N CA5-04N	30
N, NE, NL, TNL (side mount)	1	1	CAL5-11	

Pneumatic timers

Interlocks

Feature	Contacts		Catalog number
	Mechanical/electrical	-	2
price			

Mechanical latches

Feature	Catalog number	List price
$\mathrm{N}, \mathrm{NL}(4$ pole only $)$	WB75A $-\triangle$	$\mathbf{\$ 8 4}$

Coil voltage selection chart - mechanical latches

50 Hz	60 Hz	Voltage code
24	$24-28$	$\mathbf{0 1}$
42	$42-48$	$\mathbf{0 2}$
48	$48-55$	$\mathbf{0 3}$
110	$110-127$	$\mathbf{0 4}$
$220-230$	$220-255$	$\mathbf{0 6}$
$230-240$	$230-277$	$\mathbf{0 5}$
$380-415$	$380-440$	$\mathbf{0 7}$
$415-440$	$440-480$	$\mathbf{0 8}$

Identification markers

| Feature | Catalog
 number | List
 price |
| :---: | :---: | :---: | :---: |
| Pack of 50 | BA5-50 | $\mathbf{\$ 1 5}$ |

Accessories

Type N, NL, NE \& TNL

Coils

Relay type	Catalog number	List price
N	ZEA16- \triangle	Z 24
	NE	ZAE16- Δ

$\overline{\Delta \text { Select the coil voltage from the Control Relay Coil Voltage Selection chart and substitute the letter code for the } \Delta \text { as the last }}$ digit in the catalog number.
Coil voltage selection chart

Hz	Relay type	12	24	48	110	120	125	208	220	240	277	380	415	440	480	500	600
60	N		81	83	84	84		34	36	80	42		86	86	51	53	55
50	N		81	83	84				80			85	86			55	
DC	NE, NL	80	81	83	86		87		88	89							

Surge suppressors - for Type N control relays

Feature	Type	Voltage range	Catalog number	List price
Varistor	N, NE NL, TNL	$\begin{gathered} 24-50 \mathrm{VAC} / \mathrm{DC} \\ 50-133 \mathrm{VAC} / \mathrm{DC} \\ 110-250 \mathrm{VAC} / \mathrm{DC} \\ 250-440 \mathrm{VAC} / \mathrm{DC} \end{gathered}$	RV5/50 RV5/133 RV5/250 RV5/440	\$ 30
RC	N	$\begin{array}{r} 24-50 \text { VAC } \\ 50-133 \text { VAC } \\ 110-250 \text { VAC } \\ 250-440 \text { VAC } \end{array}$	$\begin{aligned} & \text { RC5-1/50 } \\ & \text { RC5-1/133 } \\ & \text { RC5-1/250 } \\ & \text { RC5-1/440 } \end{aligned}$	

Technical data

Accessory mounting information Type N, NE, NL \& TNL

Configurations of accessories are different depending on whether front or side mounted.

	Accessories - Front mounting			Accessories - Side mounting	
$\left.\begin{array}{cc} \text { Type } & \begin{array}{c} \text { Main } \\ \text { poles } \end{array} \end{array} \begin{array}{c} \text { Built-in } \\ \text { auxiliary } \\ \text { contacts } \end{array}\right)$	Auxiliary conta 1-pole CA5-	blocks 4-pole CA5-	TP - A Pneumatic timer block	Auxiliary contac 2-pole CAL5-11	
	1 to 4 CA5- 1-pole blocks	1 CA5Or 4-pole block	Or 1 TP - A block	$\begin{aligned} & 1 \text { to } 2 \\ & +\quad \text { CAL5-11 blocks } \end{aligned}$	1 VM/E5-1 block + 1 CAL5-11 block
	-	-	-	1 to 2 CAL5-11 blocks	$\begin{aligned} & 1 \text { VM/E5-1 block } \\ & \text { Or } \\ & +1 \text { CAL5-11 block } \end{aligned}$
NE (1) 222 E NE.........................$~(1) ~$ 3 1 E	1 to 4 CA5- 1-pole blocks	1 CA5Or 4-pole block	Or 1 TP - A block	$\begin{aligned} & 1 \text { to } 2 \\ & + \text { CAL5-11 blocks } \end{aligned}$	$\begin{aligned} & 1 \text { VM/E5-1 block } \\ & \text { Or }+1 \text { CAL5-11 block } \end{aligned}$
	-	-	-	$\begin{aligned} & 1 \text { to } 2 \\ & +\quad \text { CAL5-11 blocks } \end{aligned}$	$\begin{aligned} & 1 \text { VM/E5-1 block } \\ & \text { Or } \\ & +1 \text { CAL5-11 block } \end{aligned}$
NL © 11 2 NL 2 E NL .. 4 4 4 0	1 to 4 CA5- 1-pole blocks	1 CA5Or 4-pole block	Or -	Or ${ }^{1}$ CAL5-11 block	$\begin{aligned} & 1 \text { VM/E5-1 block } \\ & \text { or } \\ & +1 \text { CAL5-11 block } \end{aligned}$
NL 445 E NL NL ... 6 6 2 E	-	-	-	$\text { Or }{ }_{\text {CAL5-11 block }}$	$\begin{aligned} & 1 \text { VM/E5-1 block } \\ & \text { Or } \\ & +1 \text { CAL5-11 block } \end{aligned}$
TNL (1) 222 E TNL TNL ... 4 4 0 E	1 to 4 CA5- 1-pole blocks	$\begin{array}{l\|l} \hline 1 \text { CA5- } \\ \text { or } 4 \text {-pole block } \end{array}$	Or -	$\text { or } 1$	$\begin{aligned} & 1 \text { VM/E5-1 block } \\ & \text { Or } \\ & +1 \text { CAL5-11 block } \end{aligned}$
	-	-	-	CAL5-11 block	1 VM/E5-1 block + 1 CAL5-11 block

Technical data

UL \& CSA

AC inductive ratings - NEMA A600

Voltage	Continuous current	Maximum make	Maximum break
120 V			
240 V	10	7200 VA	720 VA
480 V			
600 V			

AC coil consumption

In rush	Sealed
80 VA	8 VA

AC operating time
DC inductive ratings - NEMA P300

Voltage	Continuous current	Maximum make	Maximum break
120 V	5	138 VA	138 VA
250 V $300-600 \mathrm{~V}$	5		

DC coil consumption

In rush	Sealed
7.0 W	7.0 W

Pickup	Dropout
$10-20 \mathrm{~ms}$	$10-20 \mathrm{~ms}$

AC mechanical endurance
DC operating time
7

Pickup	Dropout
$30-90 \mathrm{~ms}$	$10-20 \mathrm{~ms}$

30 million operations
DC mechanical endurance
30 million operations

Other possible contact combinations with auxiliary contacts added by the user

Technical data
 Terminal marking and positioning
 Type NE

NE control relays
Pole configuration schematics

NE12E

NE21E

NE30E

	Technical data
$\mathrm{cos}^{\text {coiol }}$	Terminal marking and positioning Type NL \& TNL

Standard devices without addition of auxiliary contacts

${ }_{-}^{\text {NL31E }}$ TNL31E

NL40E

TNL44E

${ }^{\text {NL62E }}$
TNL62E

Other possible contact combinations with auxiliary contacts added by the user

Technical data IEC

Type	NE12, NE 21, NE 30	N22, N31, N40	N44, N53, N62, N71, N80	NL22, NL31, NL40	NL44, NL62
Number of poles	3	4	8	4	8
Insulation characteristics					
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$ acc. to IEC947-5-1 and VDE0110 (Gr. C) acc. to UL/CSA	690				
Rated impulse withstand voltage $\mathbf{U}_{\text {imp }}$ acc. to IEC947-5-1			8		
General technical data					
Standards	Devices complying with international standards IEC947-5-1/947-4-1 and European standards EN60 947-5-1/60 947-4-1 Electromagnetic compatibility (EMC) according to amendment A11 to IEC947-1; EN60 947-1 and amendment 2 to IEC947-4-1				
Air temperature near contactor - for operation in free air: - for storage:	$\begin{aligned} & -40 \text { to }+55\left(0.85-1.1 \mathbf{U}_{\mathrm{c}}\right) /+55 \text { to }+70\left(\mathbf{U}_{\mathbf{c}}\right) \\ & -60 \text { to }+80 \end{aligned}$				
Climatic withstand	according to IEC68-2-30 and 68-2-11 - UTE C63-100, Specification II				
Mounting positions	Positions 1 to $5-\theta \leq 55^{\circ} \mathrm{C}: 0.85-1.1$$-\theta=55-70^{\circ} \mathrm{C}:$				
(see diagrams below)	Position 6	$\begin{aligned} & -\theta \leq 55^{\circ} \mathrm{C}: 0.95 \\ & -\theta>55^{\circ} \mathrm{C}: \text { not } \end{aligned}$	1		
Operating altitude m					
Shock withstand according to IEC 68-2-27 and EN 60068-2-27 Mounting pos. 1	$1 / 2$ sinusoidal shock, 11 ms : no change in contact position Shock direction: A, C1, C2 : 20 g $\begin{array}{ll} \text { B1 } & : 5 \mathrm{~g} \\ \text { B2 } & : 15 \mathrm{~g} \end{array}$				
Mounting	35 mm according to IEC715 and EN50022$2 \times \mathrm{M} 4$				
- on mounting rail - with screws (not supplied)					
Connection terminals (delivered in open position, screws of unused terminals must be tightened)	M 3.5 (+,-) posidrive 2 screw with cable clamp				
Connection capacity					
Rigid solid $1 \times$ AWG $2 \times$ AWG	$\begin{aligned} & 16-12 \\ & 16-12 \end{aligned}$				
Degree of protection according to IEC529, IEC947-1 and EN60529 - Pole terminals - Coil terminals	$\begin{aligned} & \text { IP20 } \\ & \text { IP20 } \end{aligned}$			$\begin{aligned} & \text { IP20 } \\ & \text { IP20 } \end{aligned}$	

Mounting positions

Electrical durability of contacts
utilization category AC - 15 according to IEC947-5-1 making current: $10 x \quad I_{e}$ with $\cos \phi=0.7$ and \mathbf{U}_{e} breaking current: $\quad \mathbf{I}_{\mathbf{e}}$ with $\cos \phi=0.4$ and $\mathbf{U}_{\mathbf{e}}$

The curves opposite show the electrical durability of the control relays as well as the add-on auxiliary contact blocks in relation to the breaking current $\mathbf{I}_{\mathbf{c}}$. These curves have been drawn for resistive and inductive loads up to $690 \mathrm{~V}, 40-60 \mathrm{~Hz}$.

Technical data IEC					
Type	NE12, NE21, NE30	N22, N31, N40	N44, N53, N62, N71, N80	NL22, NL31, NL40	NL44, NL62
Number of poles	3	4	8	4	8
Pole utilization characteristics					
Rated operational voltage $\mathrm{U}_{\mathrm{e}} \mathrm{V}$	690				
Conventional thermal current in free air $\mathrm{I}_{\text {th }}$ according to IEC947-5-1 $\quad \theta \leq 40^{\circ} \mathrm{C}$	16			16	
Rated operating current I_{e} $\begin{array}{rlr} \text { in AC-15 according to IEC947-5-1 } \\ 24-127 \mathrm{~V} \mathrm{50/60} \mathrm{~Hz} & \mathrm{~A} \\ 230-240 \mathrm{~V} 50 / 60 \mathrm{~Hz} & \mathrm{~A} \\ 400-415 \mathrm{~V} 50 / 60 \mathrm{~Hz} & \mathrm{~A} \\ 500 \mathrm{~V} 50 / 60 \mathrm{~Hz} & \mathrm{~A} \\ 690 \mathrm{~V} 50 / 60 \mathrm{~Hz} & \mathrm{~A} \end{array}$	4322				
in DC-13 according to IEC947-5-1 \quad 24VDCAWW 48VDC 72VDC AWW 125VDC 250VDC AWW	$\begin{gathered} 6 / 144 \\ 2.81134 \\ 1 / 72 \\ 0.55 / 69 \\ 0.3 / 75 \end{gathered}$			$\begin{gathered} 6 / 144 \\ 2.8 / 134 \\ 1 / 72 \\ 0.55 / 69 \\ 0.3 / 75 \end{gathered}$	
Field of rated frequencies Hz	25-400				
Mechanical durability in operating cycles Max. switching frequency	$\begin{gathered} 10 \text { million } \\ 3000 \end{gathered}$	$\begin{aligned} & >20 \text { million } \\ & 6000 \end{aligned}$		$\begin{aligned} & \hline 30 \text { million } \\ & 6000 \end{aligned}$	
	1200				
Rated making capacity according to IEC947-5-1 Rated breaking capacity according to IEC947-5-1	$\begin{aligned} & 10 \times \mathrm{I}_{\mathrm{e}} / \mathrm{AC}-15 \\ & 10 \times \mathrm{I}_{\mathrm{e}} / \mathrm{AC}-15 \\ & \hline \end{aligned}$				
gG (gl) protection fuse A	10				
Rated short time withstand current at ambient temp. of $40{ }^{\circ} \mathrm{C}$, 1.0 s in free air, from cold state 0.1 s	$\begin{aligned} & 100 \mathrm{~A} \\ & 140 \mathrm{~A} \end{aligned}$			$\begin{array}{r} 50 \mathrm{~A} \\ 100 \mathrm{~A} \end{array}$	
Insulation resistance at 500 VDC	after durability test: $5 \mathrm{M} \Omega$				
Min. switching capacity with failure rate below 10-6	17V/5mA			$24 \mathrm{~V} / 5 \mathrm{~mA}$	
Non overlapping time between N.O. and N.C. contacts	≥ 2				
Power loss per pole at 6A W	0.10			0.15	
Magnet system characteristics					
Coil operating limits $\theta \leq 40^{\circ} \mathrm{C}$	according to IEC 947-5-1 : 0.85-1.1 U_{c}				
Drop out voltage in \% of U_{c}	10-30\%	roughly 40-65\%		roughly 10-30\%	
Coil consumption (average value) - a.c. operation: 50 Hz pull in VA 60 Hz pull in VA $500 / 60 \mathrm{HZ}$ pull in VA/AA $50 / 60 \mathrm{~Hz}$ holding VA/W	- - -	$\begin{gathered} 70 \\ 80 \\ 74 / 70 \\ 8 / 2 \\ \hline \end{gathered}$			
- d.c. operation: cold pull in W warm holding W	$\begin{gathered} 90 \\ 2 \end{gathered}$	-		3	
Rated control voltage $\mathbf{U}_{\mathbf{c}}$ - AC operation: $50 / 60 \mathrm{~Hz}$ - DC operation:	$12-250$	$\begin{gathered} 20-690 \\ - \end{gathered}$		$12-240$	
Max. permissible short supply interruption without opening of contacts	2	2		2	
Operating time between coil energization and: - closing of N.O. contact ms - opening of N.C. contact ms between coil de energization and: - opening of N.O. contact ms - closing of N.C. contact ms	$\begin{gathered} 10-16 \\ 8-12 \\ 5-14 \end{gathered}$	$\begin{aligned} & 10-2 \\ & 7-21 \\ & 4-11 \\ & 9-16 \end{aligned}$			

Approximate dimensions
Type N, NE, NL, \& TNL

AC \& DC operated

Type N, 4 Pole, AC operated

Type NE, 4 Pole, DC operated

Type NL, TNL

Approximate dimensions

Accessories for Type N \& NE

N \& NE

7

ON-POSITION
LATCH

PNEUMATIC TIMER

MECH INTERLOCK D.C. OPERATED

Type		A	B	C	D	E	F
N	IN	2.20	3.96	4.21	5.71	5.00	-
	MM	56	100.5	107	145	127	-
N NE	IN	2.20	3.96	4.21	5.71	5.00	-
	MM	56	100.5	107	145	127	-

ABB
 Electronic relays
 Safety

Description

The C57x series covers 10 safety relays which perform safety functions on machines. Their fields of application extend from emergencystop circuits through guard door monitoring functions and tread mats to presses and punches. All C57x products are UL Listed, CSA approved and bear the CE Mark All safety relays can be used on the basis of their classification into the risk categories to EN 954-1, they are approved by the employers' liability insurance associations and/or the German Technical Inspection Authority (TÜV) and comply with the requirements of EN 60204, Part 1. Redundancy is achieved by series-connection of two N.O. contacts. These N.O. contacts are located in two mutually independent, positive-action, all-or-nothing relays which monitor each other by means of a specialpurpose circuit.
Diversity is provided thanks to the combination of N.C. contact and N.O. contact. Cyclic monitoring of the safety circuit in each On/Off cycle ensures maximum reliability.
Thanks to the two-channel control and/or control which is immune to shorts across
contacts, it is also possible to monitor signalling devices such as emergency-stop buttons or limit switches of the guard doors. This ensures the required level of safety even on systems subject to a high level of pollution. In the event of a fault or error, the safe state of the system is achieved directly after opening the safety contacts. These enable circuits are N.O. contacts which open reliably in the event of fault or error and thus reliably switch off the potentially hazardous drives or machines. Additional signalling contacts, N.C. contacts which close in the event of a fault or error or semiconductor outputs, are available, depending on the type of equipment. Easy, reliable and fast wiring is achieved by a clear and manageable terminal designation system. This allows wiring errors to be minimized.
In addition to all these safe features, the C57x safety relays correspond to the product design of ABB's range of switchgear and control systems. They fit in perfectly with the overall design of the switch cabinet.

Type C570

C570

Voltage range		Output contacts			Safety category	Weight (oz.)	Piece per unit	Catalog number	List price
50/60Hz	VDC	$\begin{array}{\|l\|} \hline \text { Enable } \\ \text { Instan- } \\ \text { taneous } \end{array}$	ontacts Time delay	Auxiliary					
-	24VDC							1SAR501042R0003	
24VAC 110VAC 230VAC	-	4 N.O.	-	$\begin{aligned} & 1 \text { N.C. } \\ & 1 \text { N.O. } \end{aligned}$	3	33.86	1	1SAR501042R0002 1SAR501042R0004 1SAR501042R0005	\$ 870

Description

- Single channel connection
- Feedback circuit for monitoring external contactors
- LED indicators for power and operation
- Output: 4 N.O. and 1 N.O. \& 1 N.C. positively driven
- Overall width: 75 mm

Application

The safety relay can be used to monitor Emergency Stop circuits and for monitoring of other protective devices (i.e., safety gates).

Type C571

Voltage range		Output contacts			Safety category	Weight (oz.)	Piece per unit	Catalog number	List price
50/60Hz	VDC	Enable contacts		Auxiliary					
		Instantaneous	Time delay						
$\begin{aligned} & 24 \mathrm{VAC} \\ & 115 \text { VAC } \\ & 230 \text { VAC } \end{aligned}$	24 VDC 24 VDC - -	$\begin{aligned} & 2 \text { N.O. } \\ & 2 \text { N.O. } \\ & 2 \text { N.O. } \\ & 2 \text { N.O. } \end{aligned}$	-	-	$\begin{aligned} & 3,(4)(1 \\ & 3,(4)(1) \\ & 3,(4)(1) \\ & 3,(4)(1) \end{aligned}$	8.47	1	1SAR501020R0001 1SAR501020R0003 1SAR501020R0004 1SAR501020R0005	\$ 280

Description

Emergency Stop monitor and safety gate monitor C571

- Auto-start / monitored start
- Operating voltage Vc at Emergency Stop button or limit switch
- Feedback loop for monitoring of external contactors
- LED indicators for power, channel 1 and 2
- Safety outputs: 2 N.O. contacts, positively guided
- Width of enclosure: 22.5 mm

Application

Use the safety control gears C571/C573 in Emergency Stop devices as per EN418 and in safety circuits as per VDE 0113 Part 1 (11.98) and/or EN 60 204-1 (11.98), e.g., with moveable covers and guard doors. Depending on the external connections, categories 3 and 4 (with additional external measures) as per DIN EN 954-1 are achievable.

Type C572

Voltage range		Output contacts			Safety category	Weight (oz.)	Piece per unit	Catalog number	List price
50/60Hz	VDC	Enable contacts		Auxiliary					
		Instantaneous	Time delay						
-	24VDC	-	-	-		0.360		1SAR501032R0003	
24VAC	-	3 N.O.	-	2 N.C.	4	0.450	1	1SAR501032R0002	\$ 520
110VAC	-	3 N.O.	-	2 N.C.	4	0.450	1	1SAR501032R0004	\$ 520
230VAC	-	3 N.O.	-	2 N.C.		0.360		1SAR501032R0005	

Description

Emergency Stop monitor and safety gate monitor C572

- Auto-start / monitored start
- 24 VDC at Emergency Stop button or limit switch
- Cross-short circuit detection at Emergency Stop button or limit switch
- Feedback loop for monitoring of external contactors
- LED indicators for power, channel 1 and 2
- Safety outputs: 3 NO contacts positively guided
- Signalling contacts: 2 NC contacts positively guided
- Width of enclosure: 45 mm

Application

Use safety control gear C572 in Emergency Stop devices as per EN 418, in safety circuits as per VDE 0113 Part 1 (06.93) and/or EN 60 204-1 (12.97), e.g. with moveable covers and guard doors. Depending on the external connection, safety category 4 as per DIN EN 945-1 is achievable with this device.

Type C573

Voltage range		Output contacts			Safety category	Weight (oz.)	Piece per unit	Catalog number	List price
50/60Hz	VDC	Enable contacts		Auxiliary					
		Instantaneous	Time delay						
24VAC	24VDC	3 N.O.	-	1 N.C.	$3,(4)^{\oplus}$	8.47	1	1SAR501031R0001	\$ 340

Description

- Operating voltage U_{e} at Emergency-Stop button or limit switch
- Single or two-channel connection
- Feedback circuit for monitoring external contactors
- LED indicators for Power, Channels 1 and 2
- Output: 3 NO and 1 NC positively driven
- Overall width: 45 mm

Application

The safety relays C571/C573 can be used in Emergency Stop circuits as per EN 418 and in safety circuits as per VDE 0113 Part 1 (11.98) and/or EN 60 204-1 (11.98), i.e., with movable covers and guard doors. Depending on the external connections, categories 3 and 4 (with additional external measures) as per DIN EN 954-1 are achievable.

Type C574

C574

Voltage range		Output contacts			Safety category	Weight (oz.)	Piece per unit	Catalog number	List price
50/60Hz	VDC	Enable contacts		Auxiliary					
		Instantaneous	Time delay						
$\begin{gathered} \text { - } \\ \text { 14VAC } \\ \text { 110VAC } \\ 230 \mathrm{VAC} \end{gathered}$	24 VDC - - -	2 N.O.	2 N.O.	1 N.C.	3, (4) (1)	15.87	1	1SAR503041R0003 1SAR503041R0002 1SAR503041R0004 1SAR503041R0005	\$ 675

Description

Emergency Stop switching device and safety door monitor with time delay C574

- Single or two-channel connection
- Feedback circuit for monitoring external contactors
- LED indicators for Power, Channels 1 and 2, delayed channel 1/2
- Release time adjustable steplessly up to 30 s
- Output: 2 NO, 1 NC, 2 NO time-delayed
- Overall width: 45 mm

Application

The safety relay C574 can be used in Emergency Stop devices as per EN 418, in safety circuits as per VDE 0113 Part 1 (06.93) and/or EN 60 204-1 (12.97), such as for monitoring safety gates, or in circuits with controlled stand-still requirement (Stop Category 1). Depending on the external circuitry, this device can be used to realize Safety Category 4 instantaneous release circuits and Safety Category 3 delayed release circuits according to DIN EN 954-1.

- Delay time, 0.5 to 30 s stepless adjustment
- Auto-start

-	24VDC	2 N.O.	2 N.O.	1 N.C.	3, (4)(1)	15.17	1	1SAR503141R0003	
24VAC	-	2 N.O.	2 N.O.	1 N.C.	3, (4)(1)	21.16	1	1SAR503141R0002	
110VAC	-	2 N.O.	2 N.O.	1 N.C.	3, (4)(1)	21.16	1	1SAR503141R0004	\$ 675
230VAC	-	2 N.O.	2 N.O.	1 N.C.	3, (4)(1)	15.17	1	1SAR503141R0005	

- Delay time, 0.05 to 3 s stepless adjustment
- Monitoring-start

-	24VDC	2 N.O.	2 N.O.	1 N.C.	3, (4)(1)	15.17	1	1SAR533241R0003	
24VAC	-	2 N.O.	2 N.O.	1 N.C.	3, (4) ${ }^{(1)}$	21.16	1	1SAR533241R0002	
110VAC	-	2 N.O.	2 N.O.	1 N.C.	3, (4)(1)	21.16	1	1SAR533241R0004	\$ 675
230VAC	-	2 N.O.	2 N.O.	1 N.C.	3 , (4)(1)	15.17	1	1SAR533241R0005	

- Auto-start

-	24VDC	2 N.O.	2 N.O.	1 N.C.	3, (4) ${ }^{(1)}$	15.17	1	1SAR533141R0003	
24VAC	-	2 N.O.	2 N.O.	1 N.C.	3, (4)(1)	21.16	1	1SAR533141R0002	
110VAC	-	2 N.O.	2 N.O.	1 N.C.	3, (4)(1)	21.16	1	1SAR533141R0004	\$ 675
230VAC	-	2 N.O.	2 N.O.	1 N.C.	3, (4)(1)	15.17	1	1SAR533141R0005	

[^2]
Type C575

Voltage range		Output contacts			Safety category	Weight (oz.)	Piece per unit	Catalog number	List price
50/60Hz	VDC	Enable contacts		Auxiliary					
		Instantaneous	Time delay						
24VAC 110VAC 230VAC	24VDC - - -	2 N.O.	-	2 N.C.	4	12.35	1	1SAR504022R0003 1SAR504022R0002 1SAR504022R0004 1SAR504022R0005	\$ 780

Description

Two-hand control C 575

- For activating presses (e.g. in conjunction with overtravel monitor C 578)
- 24 V DC at the two-hand control switches
- Feedback circuit for monitoring external contactors
- 5 LED circuit state indicators for Power, S1 ON, S1 OFF, S2 ON, S2 OFF
- Simultaneity monitoring: 0.5 s
- Output: 2 NO, 2 NC positively driven
- Overall width: 45 mm

Application

C575 is suitable for installation in controls for presses.

- Hydraulic presses DIN EN 693
- Eccentric and related presses EN 692
- Screw presses EN 692

Type C576

7

Voltage range		Output contacts			Safety category	Weight (oz.)	Piece per unit	Catalog number	List price
$50 / 60 \mathrm{~Hz}$	VDC	Enable contacts		Auxiliary					
		Instantaneous	Time delay						
24VAC	24VDC	2 N.O.	-	-	4	8.47	1	1SAR501120R0001	\$ 350

Description

Emergency Stop switching device and safety door monitor C 576

- Cross-short detection at the EMERGENCY-STOP button or limit switch
- 24 V DC at the EMERGENCY-STOP button
- Single or two-channel connection
- Feedback circuit for monitoring external contactors
- LED indicators for Power, Channel 1, Channel 2 and Power
- Output: 2 NO
- Auto-start
- Overall width: 22.5 mm

Application

The safety relay C576 can be used in safety circuits as per VDE 0113 Part 1 (11.98) or EN 60 204-1 (11.98), i.e., with movable covers and safety gates; the safety relay C577 in Emergency Stop circuits as per EN 418. Depending on external connections, category 4 as per DIN EN 954-1 is achievable.

Type C577

C575

Voltage range		Output contacts			Safety category	Weight (oz.)	Piece per unit	Catalog number	List price
$50 / 60 \mathrm{~Hz}$	VDC	Enable	ontacts	Auxiliary					
		Instantaneous	Time delay						
24VAC	24VDC	2 N.O.	-	-	4	8.47	1	1SAR501220R0001	\$ 350

Description

Emergency stop switching device and safety door monitor C577

- Cross-short detection at the Emergency Stop button or limit switch
- 24 V DC at the Emergency Stop button
- Single or two-channel connection
- Feedback circuit for monitoring external contactors
- LED indicators for Power, Channel 1, Channel 2 and Power
- Output: 2 NO
- Controlled start
- Overall width: 22.5 mm

Application

The safety relay C576 can be used in safety circuits as per VDE 0113 Part 1 (11.98), or EN 60 204-1 (11.98) i.e., with movable covers and safety gates; the safety relay C577 in Emergency Stop circuits as per EN 418. Depending on external connections, category 4 as per DIN EN 954-1 is achievable.

Type C578

C575

Voltage range		Output contacts			Safety category	Weight (oz.)	Piece per unit	Catalog number	List price
50/60Hz	VDC	Enable c	ontacts	Auxiliary					
		Instantaneous	Time delay						
	24 VDC - - -	3 N.O.	-	1 N.C.	4	15.87	1	1SAR505031R0003 1SAR505031R0002 1SAR505031R0004 1SAR505031R0005	\$ 910

Description

Overtravel monitor C 578

- Cross-short detection at the EMERGENCY-STOP button or limit switch
- 24 V DC at the EMERGENCY-STOP button
- Feedback circuit for monitoring external contactors
- LED indicators for Power and Enable
- Output: 3 NO and 1 NC positively driven
- Controlled start
- Overall width: 45 mm

Application

The overtravel distance tester C578 is intended for checking the overtravel of linearly operating hydraulic, pneumatic and spindle presses in accordance with VBG 7 n 5.2 § 11.

Type C579
(20asen

Description

Expansion unit for contact expansion of the safety switching devices C 579.
One enable contact of the basic device is required for connection to the expansion unit.

- 4 NO positively driven
- Overall width: 22.5 mm

Application

You can use the C579 expansion unit in combination with all the C57x basic units. It extends the number of release circuits. Depending on the external connection, category 4 as per DIN EN 954-1 is achievable with this device.

Accessories
for Type C560

Type	Description	Weight (oz.)	Pcs per unit pk	Catalog number	List price
C560.10	Cover cap sealable, for protection against unauthorized adjustment	8.47	5 sets	1SAR390000R1000	$\mathbf{\$ 3 0}$
C560.20	Panel mounting bracket	8.47	5 sets of two pcs ea.	1SAR390000R2000	$\mathbf{2 2}$

C565-S

with positively guided contacts

Circuit diagram C 565-S

AC/DC

24... 240 VAC/DC

Multifunction time relay - 8 functions ${ }^{\oplus}$, 15 time ranges, $2 \mathrm{c} / \mathrm{o}$ positively guided \& gold plated

Time range with rotary switch can be set to	Supply voltage AC $50 / 60 \mathrm{~Hz}$		Weight (oz.)	Piece per unit	Catalog number	List price	
$0.05 \mathrm{~s}-100 \mathrm{~h}^{\circledR}$	$24-240 \mathrm{~V}^{\circledR}$	$24-240 \mathrm{~V}^{\circledR}$	5.28	1		1 SAR330030R0000	$\mathbf{\$ 1 2 9 . 0 0}$

Functions can be set by a rotary switch.
Separate markers allow a clearly legible and distinctive setting of the timing functions.
The markers are available as an accessory.

Accessories				
Item description	Ident letter	Piece per unit	Catalog number	List price
C560.10, cover sealable For protecting against unauthorized readjustment	-	5	1SAR390000R1000	\$ 30.00
C560.20, plug-in tab for screw mounting Mounting on panel	-	5 with 2 pieces each	1SAR390000R2000	22.00
C560.40, Set of labels for multifunction relay C565, full set with 16 functions ON-delay OFF-delay, with auxiliary voltage ON and OFF-delay, with auxiliary voltage Flascher, starting with OFF Impulse-ON Impulse-OFF, with auxiliary voltage Pulseformer with auxiliary voltage	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \mathrm{D} \\ & \mathrm{E} \\ & \mathrm{~F} \\ & \mathrm{G} \end{aligned}$	5 sets	1SAR390000R4000	42.00

(1) Switch position y no timing. To be used for testing purposes (ON/OFF function) within the installation. When voltage is applied the relay remains energized or remains de-energizes permanently.
(2) Operating range 0,7 to $1,25 \times \mathrm{U}_{\mathrm{s}}$.
(3) Operating range 0,85 to $1,1 \times \mathrm{U}_{\mathrm{s}}$.
(4) The c/o contacts are operated simultaneously, so that 8 functions can be selected (no Ym, no instantaneous contact)
(5) Positively guided: N/C and N/O contacts are never closed both, contact distance of 22.5 mm is guaranteed, minimum switching load 12 V , 3 mA .

Technical data

Time relay	C 565-S
Mechanical service life operations	30×10^{6}
Rated insulated voltage (Pollution degree 3) Overvoltage categorie III acc. to DIN VDE 0110	300
Permissible ambient temperature $\begin{array}{l}\text { during operation } \\ \text { storage }\end{array}$ $\begin{array}{l}\circ \\ \\ \\ \end{array} \mathrm{C}$	$\begin{aligned} & -25 \text { to }+60 \\ & -40 \text { to }+80 \end{aligned}$
Operating range of excitation ${ }^{(1)}$	0.85 to $1.1 \times \mathrm{U}_{\mathrm{s}}$ with $\mathrm{AC} ; 0.8$ to $1.25 \times \mathrm{U}_{\mathrm{s}}$ with DC 0.95 to 1.05 times rated frequency
Rated power at AC $230 \mathrm{~V}, 50 \mathrm{~Hz}$	$\begin{aligned} & 2 \\ & 6 \end{aligned}$
Rated operating currents I_{e} $\mathrm{AC}-15$ at $\mathrm{AC} 230 \mathrm{~V}, 50 \mathrm{~Hz}$ A Output relay $\mathrm{AC}-140 ; \mathrm{DC}-13$ - DC-13 at DC 24V A DC-13 at DC 48V A DC-13 at DC 60V A DC-13 at DC 110 V A DC-13 at DC 230 V A	$\begin{aligned} & 3^{3} \\ & - \\ & 1 \\ & 0.45 \\ & 0.35 \\ & 0.2 \\ & 0.1 \end{aligned}$
Fusing DIAZED ${ }^{\text {® }}$ [Utilization category gL/gG] ${ }^{\text {a }}$ A	4
Switching frequency when loaded with I_{e}, AC 230 V $1 / \mathrm{h}$ when loaded with contactors B6, B7, AC 230 V $1 / \mathrm{h}$	$\begin{aligned} & 2500 \\ & 5000 \end{aligned}$
Recovery time $\mathrm{ms}^{\text {a }}$	$150{ }^{\oplus}$
Minimum ON period ms	35
Setting tolerance referred to full scale value \quad typically $\pm 5 \%$	
Repeat accuracy	$\leq \pm 1 \%$
Enclosure acc. to DIN EN 60529	IP 20 terminals IP 40 covers
Wire size single-core $\mathrm{mm} / \mathrm{in}$. stranded with wire end ferrule $\mathrm{mm}{ }^{\prime \prime}$ single-core or stranded AWG	$\begin{aligned} & 1 \times(0.5-4) \\ & 2 \times(0.5-2.5) \\ & 1 \times(0.5-2.5) \\ & 2 \times(0.5-1.5) \\ & 2 \times(20-14) \end{aligned}$
Terminal screws for normal screw-driver size 3 and Pozidrive 2	M 3.5
Permissible normal position	any
Resistance to shock semi-sinusoidal acc. to IEC 60068-2-27 g/ms	15/11
Vibrostability acc. to IEC 60068-2-6 Hz/mm	10-55 / 0,35
EMV-tests by basic specification	$\begin{aligned} & \text { EN 50081-1 } \\ & \text { EN 50082-2 } \end{aligned}$

(1) Unless otherwise specified
(3) For C565-S; open $\mathrm{I}_{\mathrm{e}}=1 \mathrm{~A}$
(4) Wide range voltage power pack; voltage dependent 10 to 250 ms .

C6700-C6702
with solid state output

- Solid-state control of actuators, therfore no wear
- No contact failure at currents of $17 \mathrm{~V}, 1 \mathrm{~mA}$
- Short circuit proof
- High switching frequencies
- 24VDC sensor supply
- Economical

Internal standard circuit diagram of a safe circuit in accordance to C 6700

Internal standard circuit diagram of safety relay C 6701with solid-state output.

Electronic safety relays with solid-state output C 67xx

- Solid-state outputs - no contacts - no wear
- Low weight \& small size - Space and weight advantage
- Positively guided standard contactors operate as switching elements

C 67xx safety relays are solely used to monitor the sensors connected (e.g. limit switches resp. EMERGENCY-STOP-buttons) and actuators (positively guided standard contactors).

The basic unit C 6700 itself does not feature safe outputs. Only when the unit is used together with positively guided actuators (e.g. contactors B6, B7) the complete circuit fulfills up to category 3 to EN 954-1.
$U s=24 \mathrm{VDC} ; \mathrm{Ue}=24 \mathrm{VDC} ; \mathrm{le}=0.5 \mathrm{ADC} 13$.
The safety relay C 6701 with solid-state outputs can be used directly to switch off connected devices up to category 3 or 4 to EN 954-1. Us = 24VDC; Ue = 24VDC; le=1.5ADC 13.

The safety relay C 6702 with solid-state outputs can also be used to directly switch off connected devices up to category 3 to EN 954-1 and stop categories 0 and 1 at a width of 22.5 mm only.
Time delay settable from $0.05-3$ or $0.5-30 \mathrm{~s}$. Us $=24 \mathrm{VDC} ; \mathrm{Ue}=24 \mathrm{VDC} ; \mathrm{le}=1.5 \mathrm{ADC} 13$.

Type	Supply voltage V_{c}	Package unit piece	Weight 1 piece kg/lb		Catalog number	List Price		
C 6700					1SAR510120R0003	1SAR511320R0003		Consult
:---:								
C 6701								

Technical data

	C 6700	C 6701	C 6702
Permissible ambient temperature T_{U} Operation / storage Degree of protection acc. to EN 60529 Rated insulation voltage V_{i}	$\begin{gathered} -25 \ldots+60^{\circ} \mathrm{C} /-40 \ldots+80^{\circ} \mathrm{C} \\ \text { IP40, IP20 at terminals } \\ 50 \mathrm{~V} \end{gathered}$		
Rated impulse withstand voltage $\mathrm{V}_{\text {imp }}$ Rated control supply voltage V_{S} Rated power consumption Operational voltage range Shock resistance (half-sine) acc. to IEC 60068 Weight Recovery time after EMERGENCY STOP Recovery time after power failure Release time after EMERGENCY STOP Recovery time after power failure Response time Response time monitored start Response time Auto-start Short circuit protection	500 V 24 VDC 1.5 W $0.9 \ldots 1.15 \times \mathrm{V}_{\mathrm{S}}$ $8 \mathrm{~g} / 10 \mathrm{~ms}$ $150 \mathrm{~g} / 0.33 \mathrm{lb}$ min .20 ms - $<30 \mathrm{~ms}$ max. 25 ms - $<125 \mathrm{~ms}$ $<250 \mathrm{~ms}$ no fusing necessary	2 kV 24 VDC 1.3 W $0.9 . .1 .15 \mathrm{x} \mathrm{V}_{\mathrm{s}}$ $8 \mathrm{~g} / 10 \mathrm{~ms}$ $150 \mathrm{~g} / 0.33 \mathrm{lb}$ min .30 ms 7 s min. 30 ms max. 40 ms - - no fusing necessary	2 kV 24 VDC 1.3 W $0.9 \ldots .15 \mathrm{x} \mathrm{V}_{\mathrm{s}}$ $8 \mathrm{~g} / 10 \mathrm{~ms}$ $150 \mathrm{~g} / 0.33 \mathrm{lb}$ min .30 ms - $30 \mathrm{~ms} / 0.05 \ldots 3 \mathrm{~s}$ or $0.5 \ldots 30 \mathrm{~s}$ adjustable - max. 40 ms - - no fusing necessary

Utilization category acc. to IEC 60947-5-1:

	Rated operational voltage V_{e}	Rated operational current I_{e}
C 6700	DC-13	24 V
C 6701	DC-13	24 V

Technical data
C570-C579

(1) Possible with additional external measures. The figures in bracket apply only if the cables and sensors are laid safely and protected mechanically.
(2) Applies only to undelayed FK; category 3 applies to time-delayed FK
(3) IP 20 terminals, IP 40 housing

Application examples

C6700

Applications

The C 6700 safety combination can be used in EMERGENCY STOP circuits according to EN 418 and in safety circuits according to
EN 60 204-1 (11.98), e.g. for moving covers and safety gates.
Safety catetory 3 according to DIN EN 954-1 or SIL2 according to
IEC 61508 can be achieved, depending on the external circuits.
Functions and connections
The C 6700 safety relay has two solid-state outputs. Three LEDs indicate the operating state and the function. During operation, all internal circuit elements are cyclically monitored for faults.
The EMERGENCY STOP button or the position switch are connected to terminals Y11, 12 or Y21, 22. The ON button is connected in series to the NC contacts of the external actuators (feedback loop) to terminals Y33, 34 .
The C 6700 safety relay and the activated contactors K1 and K2 must have the same frame potential. Safety category 3 to EN 954-1 is achieved only in combination with 2 external actuators with positively driven feedback contacts.

Use a power pack to IEC 60536 safety class III (SELV or PELV) for power supply!

Terminal marking

Supply voltage	A1	L/+
Inputs	A2	M
	Y11, 12	Channel 1 EMERGENCY STOP or position switch
	Y21, 22	Channel 2 EMERGENCY STOP or position switch
	Y20	Single channel switch
	Y33, 34	ON button, feedback loop
Outputs	14,24	Solid-state outputs

Internal circuit

Two channel autostart for safety gate monitoring Category 3/SIL2

Operation

LEDs		Operation				
POWER	RUN	FAIL	PS	E-STOP	ON	Outputs
			ON	non activated	activated	on
		activated	non activated	off		
				non activated	non activated	off

Faults

	\bigcirc	• Defect in electronic • Crossover in EMERGENCY STOP circ.	off	
\bigcirc	\bigcirc	O	No supply voltage	

Fault clearance

1. Switch supply voltage off.
2. Clear fault or replace device.
3. Switch supply voltage back on.

Cable length

for \begin{tabular}{ll}

\&	max. 2000 m total cable length for
$150 \mathrm{nF} / \mathrm{km}$	

\& sensors
\end{tabular}

EMERGENCY STOP, single channel, with monitored start Category 3/SIL2

EMERGENCY STOP, single channel, with monitored start Category 2/SIL1

Single channel autostart for safety gate monitoring
Category 2/SIL1

Application examples

Application

The C 6701 safety combination can be used in EMERGENCY STOP circuits according to EN 418 and in safety circuits according to
EN 60 204-1 (11.98), e.g. in movable guards and safety gates.
Depending on the external circuit elements, safety category 4 according to DIN EN 954-1 or SIL 3 according to IEC 61508 can be achieved.

Functions and connections
The C 6701 safety combination has two reliable solid-state outputs. Three LEDs indicate the operating state and the function.
When the device is put into operation it runs through a self-test to test the correct functioning of the internal electronics. All internal circuit components are monitored for faults cyclically during operation.
The EMERGENCY STOP button and/or the position switches or light arrays are connected to terminals Y11, Y12 and Y21, Y22. The ON button is connected in series with the NC contacts of the external actuators to the supply voltage L+ $(24 \vee D C)$ and to terminal Y34. The cascading input 1 is connected either via a safe output or directly to the supply voltage L+ (24 V DC).
External actuators or loads can be switched via safe outputs 14, 24. It must be ensured that the actuators or loads and the C 6701 electronic safety combination have the same frame potential. Paralleling outputs 14 and 24 to increase the load current is not permissible.
If electronic sensors (e.g. light-array monitoring) are used, in single-channel operation, Y35 must be connected to L+ (24VDC).
For autostart operation, Y32 must be connected directly to L+ (24VDC) and Y34 must be connected to it via NC contacts of the external actuators.

Use a power pack to IEC 60536 safety class III (SELV or
PELV) for power supply!

Terminal marking		L/+		
Supply voltage	A1	M		
Inputs	A2	M		
	Y11, 12	Channel 1 EMERGENCY STOP or position switch		
	Y21, 22	Channel 2 EMERGENCY STOP or position switch		
	Y35	With / without cross circuit detection Input Y32		Autostart switch
:---				
Outputs				

Internal circuit

Safety gate monitoring, two channel, autostart
Category 4/SIL 3

[^3] (2) Only when using circuit variant with "cross circuit detection".

Operation

LEDs			Operation			
POWER	RUN	FAIL	PS	E-STOP	ON	Outputs
-	-	\bigcirc	ON	non activated	activated	on
-	\bigcirc	准		activated (1)	non activated	off
-	\bigcirc	\bigcirc		non activated	non activated	off
-	\bigcirc	flashes	on start up self test approx. 7 sec .			
			Fault			
-	\bigcirc	flashes	Defect in the electronic Change in terminal assignment during operation Short circuit to 24V (2)			off
\bigcirc	\bigcirc	\bigcirc	No supply voltage			

Fault clearance

1. Switch supply voltage off.
2. Clear fault or replace device.
3. Switch supply voltage back on.

Cable length
for $2 \times 1.5 \mathrm{~mm}^{2} \quad$ max. 2000m total cable length for $150 \mathrm{nF} / \mathrm{km}$ sensors

EMERGENCY STOP, single channel, monitored start
Category 2/SIL 1

EMERGENCY STOP, two channel, monitored start with additional ON button category - Category 4/SIL3

Light array monitoring, two channel, autostart category, Category 4/SIL3

Application examples
C6702

Emergency Stop, two channel, monitored start with additional ON button and safety gate monitoring category 4/SIL 3

Application

The C 6702 safety combination can be used in EMERGENCY STOP circuits according to EN 418 and in safety circuits according to
EN 60 204-1 (11.98), e.g. in movable guards and safety gates. Depending on the external circuit elements, safety category 4 according to DIN EN 954-1 or SIL 3 according to IEC 61508 can
be achieved.

Functions and connections

The C 6702 solid-state safety combination has one safe solid-state output and one time-delayed safe solid-state output. Three LEDs indicate the operating state and the function.
When the device is put into operation it runs through a self-test to test the correct functioning of the internal electronics. All internal circuit components are monitored for faults cyclically during operation.
The EMERGENCY STOP button and/or the position switches or light arrays are connected to terminals Y11, Y12 and Y21, Y22. The ON button is connected in series with the NC contacts of the external.
The cascading input 1 is connected either via a safe output or directly to the supply voltage L+ (24 V DC). External actuators or loads can be switched via safe outputs 14,28 . It must be ensured that the actuators or loads and the C 6702 electronic safety combination have the same frame potential. Paralleling outputs 14 and 28 to increase the load current is not permissible.
If electronic sensors (e.g. light-array monitoring) are used in single-channel operation, Y35 must be connected to L+ (24VDC).
For autostart operation, Y32 must be connected directly to L+ (24VDC) and Y34 must be connected to it via NC contacts of the external actuators.

Use a power pack to IEC 60536 safety class III (SELV or PELV) for power supply!

Terminal marking

Supply voltage	A1	L/+
	A2	M
Inputs	Y11, 12 \quad Channel 1 EMERGENCY STOP or	
	position switch	
	Y21, 22 \quad Channel 1 EMERGENCY STOP or	
	position switch	
	Y35	With / without cross circuit detection
	Y32	Autostart changeover switch
	Y34	ON button, feedback circuit
Input	1	Cascading input
Outputs	14	Safe solid state output
	28	Safe solid state output, time delayed

Safety mat, two channel, autostart category 3/SIL 2

Operation

LEDs		Operation				
POWER	RUN	FAIL	PS	E-STOP	ON	Outputs
		ON	non activated	activated	on	
				activated (1)	non activated	off

Fault clearance

1. Switch supply voltage off.
2. Clear fault or replace device.
3. Switch supply voltage back on.

Cable length

for | $2 \times 1.5 \mathrm{~mm}^{2}$ | max. 2000 m total cable length for |
| :--- | :--- |
| $150 \mathrm{nF} / \mathrm{km}$ | sensors |

Internal circuit

(1) Power pack
(2) Sensors
(3) Output 1
(4) Output 2

[^4] (2) Only when using device with "cross circuit detection".

Application examples

Safety gate monitoring, two-channel, autostart category 4 / SIL 3 with voltage-operated e.l.c.b. and delayed disconnection, stop category 1

EMERGENCY STOP, two-channel, monitored start with additional ON button category 4 / SIL 3 with voltage-operated e.l.c.b. and delayed disconnection, stop category 1

EMERGENCY STOP, two-channel, monitored start with additional ON button and safety gate monitoring, two-channel, autostart; category 4 / SIL 3

Safety mat, two-channel, autostart; category 3 SIL2

EMERGENCY STOP, single-channel, monitored start with additional ON button category 2 / SIL 1 with voltage-operated e.l.c.b. and delayed disconnection, stop category 1

7

EMERGENCY STOP and safety gate monitoring, two channel with tumbler, monitored start category 4 / SIL 3

Light-array monitoring, two-channel, autostart category 4 SIL 3

Personnel safety and machine protection Risk category according to EN 954-1

Classification of a machine into categories to EN 954-1

Pursuant to the Machinery Directive 89/393/EEC, every machine must comply with the relevant directives and standards. Measures must be taken to keep the risk to persons below a tolerable extent.
In the first step, the project planner performs a risk evaluation to
EN 1050 "Risk Assessment". This must take into consideration the machine's ambient conditions for instance. Any overall risk must then be assessed. This risk assessment must be conducted in such a form as to allow documentation of the procedure and the results achieved. The risks, dangers and possible technical measures to reduce risks and dangers must be stipulated in this risk assessment. After stipulating the extent of the risk, the category on the basis of which the safety circuits are to be designed is determined with the aid of EN 954-1 "SafetyRelated Components of Controls".
This determined category defines the technical requirements applicable to the design of the safety equipment.
There are five categories (B, 1, 2, 3 and 4), whereby B (standing for basic category) defines the lowest risk and, thus, also the minimum requirements applicable to the controller.

Possible selection of categories pursuant to EN 954-1

Starting point for the risk assessment of the safety-related component of the controller.

S- Serious injuries

S1 Slight (normally reversible) injuries,
S2 Serious (normally irreversible) injuries, including death

F- Frequency and/or duration of the risk exposure
F1 Rare to frequent and/or short duration of exposure
F1 Frequent to sustained and/or longduration of exposure
P- Options for risk avoidance
(Generally referred to the speed and frequency at which the dangerous components moves and to the clearance from the dangerous component).
P1 Possible under certain conditions
P2 Hardly possible

B1-4 Categories for safety-related components of controls
® Preferred category
® Possible category requiring additional measures
\bigcirc Disproportionately extensive measures by comparison with the risk

Safety category	Summary of requirements	System behaviour (2)	Principles for achieving safety
B	The safety-related components of controls and/or their protection devices and their components must be designed, constructed, selected, assembled and combined in compliance with the applicable standards, such that they can withstand the anticipated influences.	The occurrence of a fault may lead to loss of the safety function.	Predominantly characterised by selection of componentsl
1	The requirements of B must be complied with. Time-proven components and time-proven safety principles must be applied.	The occurrence of a fault may lead to loss of the safety function but the probability of occurrence is less than in category B.	
2	The requirements of B and the use of the time-proven safety principles must be complied with. The safety function must be checked at appropriate intervals by the machine control.	- The occurrence of a fault may lead to loss of the safety function between the inspection intervals.	Predominantly characterised by the structure
3	The requirements of B and the use of the time-proven safety principles must be complied with. Safety related components must be designed such that: - a single fault in any of these components does not lead to loss of the safety function and - the individual fault is detected, wherever feasible in an appropriate manner.	- The loss of the safety function is detected by the check/inspection. - If the single fault occurs, the safety function is always retained. - Certain faults but not all faults are detected. - An accumulation of undetected faults may lead to loss of the safety function.	
4	The requirements of B and the use of the time-proven safety principles must be complied with. Safety related components must be designed such that: - a single fault in any of these components does not lead to loss of the safety function and - the individual fault is detected at or before the next requirement applicable to the safety function or, if this is not possible an accumulation offaults may then not lead to loss of the safety function.	- If the faults occur, the safety function is always retained. - The faults are detected in good time to prevent loss of the safety function	

This mandatory classification runs likes a red thread from selection of the smallest limit switch through to the overall concept of the entire machine, whereby it is necessary to grapple with the permanent conflict between what is technically feasible and what is permitted on the basis of "pure theory".
Thus: Depending on application, not every technically feasible safety category is also permitted. For instance, in the case of contactless protection devices (light barriers etc.) only categories 2 or 4 are permitted. By contrast, in the case of tread mats, categories B to 4 can be used, depending on risk assessment, provided these categories can be reached at all owing to the design.
The 2-hand control C575 would technically also comply with the lower categories but it cannot be connected in categories 1-3.
(1) The categories are not intended to be applied in any specific order or hierarchical arrangements with respect to the technical-safety requirements.
(2) The risk assessment will indicate whether full or partial loss of the safety function(s) as the result of fault is acceptable.

Classification of a machine into categories to EN 954-1

Pursuant to the Machinery Directive 89/393/EEC, every machine must comply with the relevant Directives and Standards. Measures must be taken to keep the risk to persons below a tolerable extent.
In the first step, the project planner performs a risk evaluation to EN 1050 "Risk Assessment". This must take into consideration the machine's ambient conditions for instance. Any overall risk must then be assessed. This risk assessment must be conducted in such a form as to allow documentation of the procedure and the results achieved. The risks, dangers and possible technical measures to reduce risks and dangers must be stipulated in this risk assessment. After stipulating the extent of the risk, the category on the basis of which the safety circuits are to be designed is determined with the aid of EN 954-1 "Safety-Related Components of Controls". This determined category defines the technical requirements applicable to the design of the safety equipment. There are five categories ($B, 1,2,3$ and 4) whereby B (standing for basic category) defines the lowest risk and, thus, also the minimum requirements applicable to the controller.

Possible selection of categories pursuant to EN 954-1

Starting point for risk assessment of the safety-related components of the control.

Description

Scope of application

Potential risks and hazards posed by a machine must be eliminated as quickly as possible in the event of danger.
For dangerous movements, the safe state is generally standstill. All safety switching devices of Series C 570 switch to de-energised state, i.e. standstill for drives, in the event of danger or fault. Standard EN 60204 demands that every machine must feature the Stop function of category 0.
Stop functions of categories 1 and/or 2 must be provided if necessary for technical-safety and/or techni-cal-function requirements of the machine. Category-0 and category-1 stops must be operable independently of the operating mode, and a category-0 stop must have priority.
There are three categories of stop function:

Category 0:

Shut-down by immediate switch-off of the energy supply to the machine drives.

Category 1:

Controlled shut-down, whereby the energy supply to the machine drive is retained in order to achieve shut-down and the energy supply is only interrupted when shut-down has been reached.

Category 2:

A controlled shut-down in which the energy supply to the machine drive is retained

EMERGENCY-STOP

EMERGENCY-STOP devices must have priority over all other functions. The energy supplied to the machine drives which may cause dangerous states must be switched off as quickly as possible without further risks or dangers. Resetting of the drives may not trigger a restart. The EMERGENCY-STOP must act either as a stop of category 0 or as a stop of category 1.
The basic device of the 570 Series of safety switch-
ing devices can be used for EMERGENCY-STOP applications up to maximum category 4 to EN 954-1. Depending on external wiring and cable routing of the sensors, category 3 resp. 4
to EN 954-1 must be reached.

Safety door monitoring

Pursuant to EN 1088, a distinction is made between interlocked, separating protective devices and interlocked, separating protective devices with follower. Here as well, the safety switching devices are used for EMERGENCY-STOP applications. Controls up to category 4 to EN 954-1 are possible.

Presses and punches

The two-hand control C 575 is a device on which the operator must use both hands simultaneously, thus protecting him against risks and dangers.
The overtravel monitor C 578 is used on linear-driven presses (e.g. hydraulic, pneumatic and spindle presses) in accordance with VBG7n52. It checks for the following only once during the test stroke:

- Correct connection of the operating controls
- External cable discontinuity
- Possible failure of the components to be monitored cyclically
The overtravel monitor can be used only in conjunction with a two-hand control. The press controllers and overtravel monitors are suitable for installation in controls for eccentric, hydraulic and spindle presses. They can be used up to category 4 to EN 954-1. Type III C to DIN 574 is possible specifically for presses.

Device construction

The safety switching device C 570 operates internally with several contactor relays. The contacts of the relays comply with the requirement in respect of positively driven operation to ZH 1/457, Edition 2, 1978.
This means that NO contact and NC contact may not be closed simultaneously.
Safety relays with positively driven contacts are used in the newly developed safety switching devices C 571-C 574, C 576, C 577 , the contact expansion C 579 and on the press controllers
C 575 and C 578. This series of devices is characterised by an extremely narrow design (22.5 mm and 45 mm). Approvals and test certificates, conventional on the market, have been issued by BG, SUVA, UL and CSA.
The function of the internal contactor relays/relays is monitored in a redundant circuit. In the event of failure of a relay, the safety switching device always switches to de-energised state. The fault is detected and the safety switching device can no longer be switched on. Using normally closed contacts and normally open contacts for the same function complies with the requirement in respect of diversity.

Enable contacts (FK)

The safety-related function must be controlled via safe output contacts, the so-called Enable contacts. Enable contacts are always normally open contacts and switch off without delay.

Signalling contacts (MK)

Normally open contacts and normally closed contacts which may not perform safety-related functions are used as the signalling contact.
An Enable contact may also be used as a
signalling contact.

Delayed Enable contacts

Drives which have a long overtravel must be decelerated in the event of danger. For this purpose, the energy supply must be maintained for electrical braking (stop category 1 to EN 60 204-1). The safety switching device C 574 also feature OFF-delayed Enable contacts, besides undelayed Enable contacts. Delay times of 0.5 to 30 s are available.
The sealable cover cap C 560.10 (see Selection data and Ordering details, Accessories) can be fitted onto C 574, C 6702 to protect against unauthorised adjustment of the set delay time.

Contact expansion

If the Enable contacts of the basic device do not suffice, positively driven contactors (e.g. B6, B7) may be used for contact expansion. One solution for increasing the number of Enable contacts, which is both simple to use and space-saving,
is the expansion unit C 579 (only 22.5 mm wide). The expansion unit C 579 provides 4 additional Enable contacts.

Expansion unit C 579

Expansion unit C 579 may not be operated separately in safety-related circuits but must be combined with a safety switching device C 57x. One Enable contact of the basic device is required for connection of an expansion unit. The category of a control with expansion units corresponds to the category of the basic device.

Mounting

Snap-on mounting on 35 mm top-hat rail to EN 50 022. Screw mounting of the safety switching devices C 57x can be implemented with two additional plug-in tabs C 560.20 (see Selection data and Ordering details, Accessories).

User Manual

A User Manual with a device description, connection diagrams and application information in several languages is enclosed with every safety switching devices of Series C 570 and C 67xx.

"Safety Engineering" Application Manual

You can find further information in the "Safety
Engineering" Application Manual. It provides you with the required information on the relevant safety standards and project planning information.
The entire range of components used for safety applications is explained in this Manual, from the sensor (Emergency-Stop command devices and position switches), through evaluation units (safety switching devices C 57x and fail-safe control
AC 31 S) to the actuator (e.g. contactor for switching motors). All these components must be selected correctly in order to meet the requirements applicable to modern safety facilities.
Please order the "Safety Engineering" Application Manual
1SAC 103201 H 0101 German
1SAC 103201 H 0201 English

Selection guide

C570-C6702

Selection table for ABB safety relays in accordance to risk category (EN 954-1):

Category	C 570	C 571	C 572	C 573	C 574	C 575	C 576	C 577	C 578	C 6700	C 6701	C 6702
B												
1	X	X	X	X	X		X	X		X	X	X
2	X	X	X	X	X		X	X		X	X	X
3	$\mathrm{x}^{(1)}$	X	X	X	x		X	X		X	X	X
4		$\mathrm{x}^{\text {(1) }}$	x	$\mathrm{x}^{\text {(1) }}$	$\mathrm{x}^{(2)}$	X	X	X	x		X	X

Selection table for ABB safety relays in accordance to device characteristics

Characteristics suitable for device	C 570	C 571	C 572	C 573	C 574	C 575	C 576	C 577	C 578	C 579	C 6700	C 6701	C 6702
EMERGENCY STOP	yes	yes	yes	yes	yes	-	yes	yes	-	(3)	yes	yes	yes
Safety gate monitoring	yes	yes	yes	yes	yes	-	yes	yes	-	(3)	yes	yes	yes
Tread mats	-	-	-	-	-	-	-	-	-	-	-	-	-
Two-hand control e.g. presses	-	-	-	-	-	yes	-	-	-	-	-	-	-
Feedback loop for monitoring of external contactors	yes	-	-	yes	yes	yes							
Single channel	yes	yes	yes	yes	yes	-	-	-	-	-	yes	yes	yes
Two channel	-	yes	yes	yes	-	yes	yes	yes	-	-	yes	yes	yes
Cross-short circuit monitoring	-	-	yes	-	yes	-	yes	yes	-	-	-	yes	yes
24VDC at the EMERGENCY STOP limit switch	-	-	yes	-	-	yes	yes	yes	yes	-	yes	yes	yes
Operating voltage at the EMERG. STOP limit switch	yes	yes	-	yes	yes	-	-	-	-	-	-	-	-
No. of safety outputs	4	2	3	3	2	2	2	2	-	4	2 (4)	2	1
No. of time delayed safety output contacts	-	-	-	-	1	-	-	-	-	-	-	-	1
No. of signalling contacts	2	-	2	1	2	2	-	-	-	-	-	- (5)	- (5)
Enclosure width in mm	75	22.5	45	22.5	45	45	22.5	22.5	45	22.5	22.5	22.5	22.5
Monitoring overtravel e.g. presses	-	-	-	-	-	-	-	-	yes		-	-	-
Auto-start	yes	yes	yes	yes	yes	-	yes	-	-	-	yes	yes	yes
Controlled/monitored start	-	-	yes	-	-	-	-	yes	-	-	yes	yes	yes

[^5]
Application examples

C570, C571, C573

Information
The safety relays are tested by BIA. The shown external wiring diagrams / application examples are examples of use only. A risk appraisal has to be done by the user. Further application examples on request.

C570

Application

The safety relay can be used to monitor EMERGENCY STOP circuits and for monitoring of other protective devices (e.g. safety gates)

EMERGENCYSTOP circuit

Operation

Operating states indication:
"READY" indicates that the supply voltage is applied to the unit, provided that the contacts of the EMERGENCY STOP pushbutton or door safety switch are closed. "ON" lights up, when the ON button is pressed and the enabling circuits are switched through.

Safety gate monitoring ($\mathrm{A}=$ door open, $B=$ door closed)

C571, C573

Application

The safety relays C 571/C 573 can be used in EMERGENCY STOP circuits as per EN 418 and in safety circuits as per VDE 0113 Part 1 (11.98) and/or EN 60 204-1 (11.98), e.g. with movable covers and guard doors. Depending on the external connections, categories 3 and 4 (with additional external measures) as per DIN EN 954-1 are achievable.

Functions and connection

The safety relay C 573 has three release circuits (safety outputs) which are configured as NO contacts and a signal circuit configured as a NC contact. The safety relay C 571 has two release (safe) circuits which are configured as NO contacts. The number of release circuits can be increased by adding one or more C 579 extension units. Three LEDs indicate the operating state and function. When the EMERGENCY STOP button or the limit switch is unlocked and when the ON button is pressed, the internal circuits of the safety relays and the external contactors are checked for proper functioning.
Connect the EMERGENCY STOP pushbutton or the limit switch in the supply cable from A1 to +24 or L24 V. To evaluate over two channels, connect Channel 2 from A2 to 0 V or N . Connect the ON button in series with the NC contacts of the external contactor (feedback loop) between terminals Y 1 and Y 2.

Terminal markings

Supply	A1	L/+
voltage	A2	N/-
Sensors	Y1, Y2	ON button, feedback loop
Outputs	13,14	Safety output $1(\mathrm{n} / \mathrm{o})$
	23,24	Safety output $2(\mathrm{n} / \mathrm{o})$
	33,34	Safety output $3(\mathrm{n} / \mathrm{o})^{*}$
	41,42	${\text { Signal circuit } 1(\mathrm{n} / \mathrm{c})^{*}}^{*}$ with C 573 only

Operating states

Fault clearance

1. Switch supply voltage off.
2. Clear fault or replace device.
3. Switch supply voltage back on.

Cable length
for $\quad 2 \times 1.5 \mathrm{~mm}^{2}$
max. 1000 m (total cable length for $150 \mathrm{nF} / \mathrm{km}$ sensors and power supply lines)

IInternal circuit

Emergency Stop, category 2 acc. to EN 954-1

EMERGENCY STOP, category 3 and 4 acc. to EN 954-1

Application examples

C571-AC

Safety gate monitoring, category 2 acc. to EN 954-1

Safety gate monitoring, category 3 and 4 acc. to EN 954-1

Application

The safety relay C 571-AC can be used in EMERGENCY STOP circuits as per EN 418 and in safety circuits as per VDE 0113 Part 1 (11.98) and/or EN 60 204-1 (12.97), e.g. with movable covers and safety gates. Depending on the external connections, safety categories 3 and 4 as per DIN EN 954-1 are achievable. When the safety combination is used in "automatic start» mode, automatic restarting (as per EN 60 204-1, sections 9.2.5.4.2 and 10.8.3) must be prevented by the higher-level control system in the event of EMERGENCY STOP.

Functions and connections

The safety relay C 571-AC has two release circuits (safety outputs) which are configured as NO contacts. The number of safety outputs can be increased by adding one or more C 579 extension modules. Three LEDs indicate the operating state and function.
When the EMERGENCY STOP button or the limit switch is unlocked and when the ON button is pressed, the internal circuits of the safety relay and the external contactors are checked for proper functioning.
Connect the EMERGENCY STOP button or the limit switch to terminals Y11, 12 and Y21, 22. The ON button is connected in series with the NC contacts of the external contactor (feedback loop) between terminals Y33, 34.

Terminal marking

Supply voltage	A1	L
Sensors	A2	N
	Y11, 12	Channel 1 EMERGENCY STOP or limit switch
	Y21,22	Channel 2 EMERGENCY STOP or limit switch
		ON button, feedback loop
Outputs	Y33, 34	On
	13,14	Safety output 1 (n/o)
	23,24	Safety output 2(n/o)

Internal circuit

(1) Power pole
(2) Control logic
(3) Channel 1
(4) Channel 2

Two channel autostart for contactor monitoring; Safety category 3 and 4 acc. to EN 954-1

Operating states

LEDs		Operation				
POWER	Channel 1	Channel 2	PS	E-STOP	ON	Safety output
				activated	non activated	open
				non activated	non activated	open
				Fandts		

Fault clearance

1. Switch supply voltage off.
2. Clear fault or replace device.
3. Switch supply voltage back on.

Cable length

Single-channel EMERGENCY STOP with additional ON button Safety category 2 acc. to EN 954-1

Two-channel EMERGENCY STOP with additional ON button Safety category 3 and 4 acc. to EN 954-1

Application examples

C572

Application

The safety relay C 572 can be used in EMERGENCY STOP circuits as per EN 418, in safety circuits as per VDE 0113 Part 1 (06.93) and/or EN 60 204-1 (12.97), e.g. with movable covers and safety gates.

Depending on the external connection, safety category 4 as per DIN EN 945-1 is achievable with this device.

Functions and connections

The safety relay C 572 has three release circuits (safety outputs) which are configured as NO contacts and two signal circuits configured as an NC contact. Three LEDs indicate operating state and function.
When the EMERGENCY STOP pushbutton or limit pushbutton is unlocked and the ON pushbutton is pressed, the redundant safety relays, electronic circuitry and external contactors are tested for proper functioning.
On the C 572, the ON circuit Y33, 34 is checked for short circuit. This means that a fault ist detected when $Y 33,34$ is closed before the EMERGENCY STOP button is closed.

Terminal marking

Supply	A1	L/+
voltage	A2	N/-
Outputs	13,14	Safety output $1(n / o)$
	23,24	Safety output $2(n / o)$
	33,34	Safety output $3(n / o)$
	41,42	Signal output $1(n / c)$
	51,52	Signal output $2(n / c)$

Function	Monitored start	Monitored start / Autostart	Autostart
1-channel	ON push button at Y33, 34	Jumper from Y11 to Y12 Jumper from Y21 to Y22 EMERGENCY-STOP circuits at Y10, 11	Feedback loop or jumper to Y33, 34 and jumper from
		Jumper from Y10 to Y111 2-channel	Y43 auf Y44 EMERGENCY-STOP Circuits at Y11, 12 and Y21, 22
Y21, 22 must be closed before or at the same time as Y11, 12			

Internal circuit

Autostart for guard door monitoring; Safety category 2 acc. to EN 954-1

Operation states

LEDs			Operation			
POWER	Channel 1	Channel 2	PS	E-STOP	ON	Safety outputs
-	次	-	ON	non activated	activated	closed
-	\bigcirc	\bigcirc		activated	non activated	open
-	\bigcirc	\bigcirc		$\begin{array}{\|c\|} \hline \text { non } \\ \text { activated } \end{array}$	$\begin{array}{\|c\|} \hline \text { non } \\ \text { activated } \end{array}$	open
			Faults			
- ${ }^{-1}$	-	\bigcirc	Relay fusion-welded Motor cont.fusion-welded Defects in electronic Short circuit in ON circuit Cross or ground faults in EMERG. STOP circuit (min. fault current $I_{K \text { min }}=0.5 \mathrm{~A}$; PTC-fuse trips or supply voltage missing			open
- ${ }_{1}$ -	\bigcirc	畺				
-	\bigcirc	\bigcirc				
\bigcirc	\bigcirc	\bigcirc				

Fault clearance

1. Switch supply voltage off.
2. Clear fault or replace device.
3. Switch supply voltage back on.

Cable length

for $\quad 2 \times 1.5 \mathrm{~mm}^{2} \quad$ max. 1000 m (total cable length for $150 \mathrm{nF} / \mathrm{km}$ sensors and power supply lines)

Autostart and safety gate monitoring
Safety category 4 acc. to EN 954-1

Monitored start for EMERGENCY STOP
Safety category 2 acc. to EN 954-1

Monitored start for EMERGENCY STOP

Safety category 3 and 4 ac. to EN 954-1

Application examples

C574

Application

The safety relay C 574 can be used in EMERGENCY STOP devices as per EN 418，in safety circuits as per VDE 0113 Part 1 （06．93）and／or EN 60 204－1 （12．97），such as for monitoring safety gates，or in circuits with controlled stand－still requirement（STOP Category 1）．
Depending on the external circuitry，this device can be used to realize Safety Category 4 instantaneous release circuits and Safety
Category 3 delayed release circuits according to DIN EN 954－1．

Functions and connections

The C 574 safety relay possesses two delayed and two instantaneous re－ lease circuits（safety outputs）as NO contacts and one instantaneous signal output as NC contact．Five LEDs indicate the operating status and the func－ tions．
The redundant safety relays，the electronics and the operated motor
7 contactors are tested for proper functioning when the EMERGENCY STOP button or the limit switch button is unlatched，and when ON circuit Y33，Y34 is closed．
On the C 574 （monitored start），the ON circuit $Y 33,34$ is checked for short circuit．This means that a fault ist detected when Y33， 34 is closed before the EMERGENCY STOP button is closed．

Terminal marking

Internal circuit

Monitored start for EMERGENCY STOP

Safety category 3 and 4 acc．to EN 954－1

Operation

LEDs					Operation			
POWER	Ch 1	Ch 2	Ch 1	Ch 2	PS	E－STOP	ON	Safety outputs
洨	象业	象	－	发	ON	non activated	activated	closed
－	\bigcirc	\bigcirc	\bigcirc	\bigcirc		activated delay time elapsed	non activated	open
－	\bigcirc	\bigcirc	\bigcirc	\bigcirc		non activated	non activated	open
－	\bigcirc	\bigcirc	－	－		activated delay time elapsed	non activated	FK 1 \＆ 2 open FK1（t）\＆FK2（t） closed
					Faults			
－	K－	\bigcirc	－	\bigcirc	Relay fusion－welded			open
安	\bigcirc	次	\bigcirc	次	Motor cont．fusion－welded			
衰	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Defect in electronic Short circuit in ON circuit			
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Cros emer （min． $\mathrm{I}_{\mathrm{K} \text { min }}=$	s or ground gency trip fault curren $=0.5 \mathrm{~A}$ ；PTC	faults in circuit fuse trips）	

Fault clearance

1．Switch supply voltage off．
2．Clear fault or replace device．
3．Switch supply voltage back on．

Cable length

for

	$2 \times 1.5 \mathrm{~mm}^{2}$
	$150 \mathrm{nF} / \mathrm{km}$

max．1000m total cable length for sensors and power supply lines）

Monitored start for EMERGENCY STOP

Safety category 2 acc．to EN 954－1

Safety gate monitoring
Safety category 3 and 4 acc．to EN 954－1

Safety gate monitoring
Safety category 2 acc．to EN 954－1

Application

C 575 is suitable for installation in controls for presses.

- Hydraulic presses DIN EN 693,
- Eccentric and related presses EN 692,
- Screw presses EN 692.

Functions and connections
The two-hand control unit C 575 possesses two release circuits (safety outputs) configure as NO contacts and two signal outputs configured as NC contacts. Five LEDs indicate the operating status and the functions.
The safety outputs are closed by simultaneous operation ($<0.5 \mathrm{~s}$) of the push-buttons $\mathrm{S} 1, \mathrm{~S} 2$. If one pushbutton is no longer pressed, the outputs open. They do not close again until both pushbuttons are no longer pressed and then simultaneously pressed again.

1. Operating voltage to be applied to the terminals A1 and A2.

The operating voltage must be de-energized with the operating
energy of the press.
2. Feedback loop to be closed:

Y11, Y12 to be jumperd or connected to the NC contacts of external contactors.
3. Input circuits to be connected:

Pushbutton S1 to terminals Y21, Y22, Y23 and
pushbutton S2 to terminals Y31, Y32, Y33.

Terminal marking

Supply voltage	A1	L/+
	A2	N/-
Outputs	13,14	Safety output 1 (n/o contact)
	23,24	Safety output 2 (n/o contact)
	31,32	n /c signal output
	41,42	n /c signal output
Inputs	Y11,12	Feedback loop
	Y21,22,23	Pushbutton S1
	Y31,32,33	Pushbutton S2

Internal circuit

Operation

l					Operation
POWER	S1 ON	S2 ON	Channel 1	Channel 2	Pushbutton
		O		O	non activated
				only S1 activated	

The unit cannot be started with the following faults:

- Short circuit, e.g. between the pushbuttons
- Defective relay coils
- Conductor failure
- Welded contacts

The output relays does not enegize if:

- The pushbuttons are not pressed simultaneously (< 0.5s)
- Only one pushbutton is pressed
- The feedback loop Y11, Y12 is open.

Cable length

$\max .1000 \mathrm{~m}$ for $2 \times 1.5 \mathrm{~mm}^{2} \quad$ (Total cable length for sensors and power supply lines)

External circuit S1, S2 pushbuttons on two-hand control console, H1 indicator light, K1and K2 must be positively guided contactors, Safety category 4 acc.to EN 954-1

Application examples

C576，C577

Application

The safety relay C 576 can be used in safety circuits as per VDE 0113 Part 1 （11．98）or EN 60 204－1（11．98），e．g．with movable covers and safety gates；the safety relay C 577 in EMERGENCY STOP circuits as per EN 418. Depending on external connections，category 4 as per DIN EN 954－1 is achiev－ able．

Functions and connections

The safety relays C 576／C 577 have two release circuits（safety outputs）configured as NO contacts．The number of release circuits can be increased by adding one or more C 579 extension units．
Three LEDs indicate operating state and function．
When the EMERGENCY STOP button or the limit switch is unlocked
and when the ON button is pressed，the internal circuit of the safety relay and the external contactors are checked for proper functioning．
On the C 577，the ON circuit Y33， 34 is checked for short circuit．
This means that a fault is detected when Y33， 34 is closed before the EMERGENCY STOP button is closed．
The EMERGENCY STOP button or the limit switch are connected to terminals Y11， $12,21,22$ ．The ON button is connected in series to the NC contacts of the external contactors（feedback loop）to terminals Y33， 34.

Terminal marking

Supply voltage	A1	L／＋		
	A2	N／－		
Sensors	Y11， 12	Channel 1 EMERGENCY STOP or limit switch		
		Y21，22		Channel 2 EMERGENCY STOP
:---				
Or limit switch				

Fault clearance

1．Switch supply voltage off．
2．Clear fault or replace device．
3．Switch supply voltage back on．

Cable length

for | | $2 \times 1.5 \mathrm{~mm}^{2}$ |
| :--- | :--- |
| | $150 \mathrm{nF} / \mathrm{km}$ |

max． 1000 m total cable length for sensors and power supply lines）

Operation

LEDs			Operation			
POWER	Channel 1	Channel 2	PS	E－Stop	ON	Safety outputs
－	－	－	ON	$\begin{array}{\|c\|} \hline \text { non } \\ \text { activated } \end{array}$	activated	closed
－	\bigcirc	\bigcirc		activated	$\begin{array}{\|c\|} \hline \text { non } \\ \text { activated } \end{array}$	open
全安	\bigcirc	\bigcirc		non activated	non activated	open
			Faults			
－	－	\bigcirc	Relay fusion－welded Motor cont．fusion－welded Defect in electronic Short circuit in ON circuit			open
－	\bigcirc	畀				
家	\bigcirc	\bigcirc				
\bigcirc	\bigcirc	\bigcirc	Cross or ground faults in EMERGENCY STOP circuit （min．fault current $\mathrm{I}_{\mathrm{K} \text { min }}=0.5 \mathrm{~A}$ ；PTC fuse trips）			

C 577 with monitored start for EMERGENCY STOP

 Category 4 acc．to EN 954－1

C 577 with monitored start for EMERGENCY STOP Category 4 acc．to EN 954－1

Application

The overtravel distance tester C 578 is intended for checking the overtravel of linearly operating hydraulic, pneumatic and spindle presses in accordance with VBG 7n5.2 §11.

Functions and connections

The overtravel distance tester C 578 has four safety outputs, three NO contacts and one NC contact. Two LEDs indicate the functions.
The C 578 tests the overtravel distance in connection with a position switch every time the control voltage is switched on. The permissible overtravel distance corresponds to dimension 's' of the cam that is used
to operate the position switch. Obtain dimension 's' from the press manufacturer in accordance with ZH 1/456 (published by the German central office for accident prevention and labour safety, Cologne).
Terminal marking

Supply	A1	L/+
voltage	A2	N/-
Outputs	13,14	Safety output 1 (tool down)
	23,24	n/o contact (tool up)
	33,34	n/o contact (overtravel distance OK)
	41,42	n/c contact (hydraulic pump ON)
Inputs	Y11,12,13,14	Feedback loop (K4)
	Y21, 22	Position switch (S4)
	Y31, 32, 33, 34	Top dead centre switch (S3)

External circuit

C 575 two hand control unit, SO Main switch,
S1, S2 keys at two hand control console, S3 Position switch for top dead centre, S4 Position switch for test cam
S5 Hydraulic pump "ON", S6 Tool "up" (manual mode), K1 Contactor for hydr. pump, K2 Tool "up",
K3, K4 Tool "down", H1 Indicator light

Operation

Sequence of operations after the press has been switched on:

1. Switch on the hydraulic pump with $S 5$, move plunger to top dead centre, if necessary by means of S6.
2. Operate S1, S2 on the two-hand control console until the position switch for test-cam (S4) opens.
3. Stop operating S1, S2.
4. Operate S1, S2 again: Indicator light H1 lights up if the overtravel distance is OK.
5. Stop operating S1, S2: The plunger returns to top dead centre.
6. If overtravel distance is OK, all outputs remain active until the control voltage is switched OFF.

LEDs		Operation
POWER	Release	
	O	Overtravel distance OK.
	Overtravel distance incorrect or test not yet performed	

Fault

If the cam overtravels position switch S4, indicator light H1 does not light up. The hazardous part of the machine can be moved up to top dead centre only by means of S 6 .
The press can no longer be used for production. When this happens, notify the maintenance staff that the press needs attention.

Internal circuit

Application examples

C579

Applications

You can use the C 579 expansion unit in combination with all
the C $57 x$ basic units. It extends the number of release circuits. Depending on
the external connection, category 4 as per
DIN EN 954-1 is achievable with this device.

Functions and connections

The C 579 expansion unit has four release circuits (safety circuits) configured as NO circuits.
Two LEDs indicate operating state and function. The device is controlled via any release circuit of the safety relays C 57x.
When the EMERGENCY STOP pushbutton or the limit switch is unlocked and the ON button is pressed, the internal circuit of the safety relay and the external contactors are checked for correct functioning.

A1	
Outputs	A2
	13,14
	23,24
	33,34
Feedback loop	43,44
	51,52

L/+

Safety output 1 (n / o contact) Safety output 2 (n/o contact) Safety output 3 (n / o contact) Safety output 4 (n/o contact) Monitoring of the extension unit

Operation

LEDs		Operation	
Channel 1	Channel 2	PS	Safety output of C 57x safety relays
		ON	closed
		open	
		Relay fusion-welded Defect in electronics	
		Motor contactor fusion welded	

Fault clearance

1. Switch supply voltage off.
2. Clear fault or replace device.
3. Switch supply voltage back on.

Cable length

For $2 \times 1.5 \mathrm{~mm}^{2}$ max. 1000 m total cable length for $150 \mathrm{nF} / \mathrm{km}$ sensors and power supply lines.

Safety gate monitoring
Safety category 4 acc. to EN 954-1

EMERGENCY STOP with time delay

Approximate dimensions

C570

C572, C574, C575, C578

C571, C573, C576, C577, C579

C6700 / C6701 / C6702

C565-S

Notes

[^0]: X

[^1]: See accessory pages

[^2]: (1) Possible with additional external measures. The digit in parenthesis apply only if the cables and sensors are laid safely and protected mechanically.

[^3]: (1) Sensor circuits open; Cross circuit between the sensors; Short circuit of sensors to frame

[^4]: (1) Sensor circuits open; Cross circuit between the sensors; Short circuit of sensors to frame

[^5]: (1) Possible with additional external measures.
 (2) Applies only to undelayed contact. Category 3 applies to delayed contact.
 (3) Contact extension
 (4) Solid-state outputs requirements of safety in acc. to 954-1 only in combination with positively guided contactors.
 (5) Solid-state outputs could also be used as safe messaging outputs.

